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Abstract

If nothing or very little is known about a stock market or if there is
hardly any trustworthy historical data and one can not estimate a reliable
set of parameters in order to construct a consistent probability model
for the stock returns or, simply, one is not convinced by the analyzed
economical and financial information necessary for decision making, is
there a function that takes into account this lack of information and
helps us build optimized portfolios?
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1 Introduction

In 1952, H. Markowitz published his now famous article Portfolio
Selection [7], which describes a method to construct portfolios if one has
a certain amount of information gathered in two well known statistical
parameters, the expected return and the variances and covariances for
each stock return. His approach consists of two stages: the first stage is
to determine these statistical parameters. As Markowitz says, he does
not treat this part in depth. The second stage starts with this estimated
information and proposes a rule to construct optimized portfolios.

In our following discussion, we will present and discuss the second
stage of Markowitz’s approach. This is done in the section 2. At the
end of section 2, we will briefly discuss the difficulties one encounters
in the first stage Markowitz’s approach, and the limitations of how
Markowitz defined a tool that he introduced in Stage 2: the risk mea-
sure. In the third section, we will discuss another risk measure and in the
forth section we suggest an alternative method to construct optimized
portfolios when Markowitz’s Stage 1 is far from being accurate. To do
so, we introduce Shannon’s entropy, first in an intuitive manner, sec-
ond in an axiomatic structure, but both in a financial environment. We
then propose our rule, where the notion of entropy plays an important
role for determining the portfolio in question. In Section 5, we will show
some numerical simulations with portfolios formed with stocks from the
Bombay market, stocks chosen from several central-eastern European
stock markets, stocks from the Dow Jones Industrial Average Index,
stocks from the Shanghai Stock Exchange and stocks from the the Swiss
market. We conclude in Section 6.

2 Classical approach: MARKOWITZ

Who controls the past, controls the future: who controls the present controls the past.
1

We suppose that an economic agent, wanting to invest a certain
amount x (in monetary units) into the stock market, knows which mar-
ket (or markets) he wants to invest in and the let N be the number of
stocks to be analyzed and eventually chosen to be part of his portfolio.

1G. Orwell, 1984
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This subset is known as the universe. We make the assumption that
the values of the stocks are not calculated in a deterministic manner, but
form a stochastic process, ‘since the future is not known with certainty ’
2. Let pi,t ∈ R>0 be the value of the ith stock at time t. Then one is in-
terested in the behavior and properties of the N -dimensional stochastic
process

{Pt}t∈T ,

where T ⊂ R>0 is a certain time interval determined in advance and, for
all t ∈ T ,

Pt : (Ω, A, P) −→ (RN
>0, BRN

>0
, PPt

)

ω 7−→ Pt(ω) = (p1,t, . . . , pN,t),

where Ω is a sample space, A a σ-algebra and P is a probability measure
on (Ω, A), and BRN

>0
is the Borel σ-algebra on RN

>0 and PPt
is the distri-

bution measure of the random vector Pt. Although this is the random
process that is responsible for all the uncertainty, in what we will discuss,
usually, one focuses more on another, very linked, random process: the
returns, during a certain time τ > 0, of the stocks. These are defined in

Definition 1. The return ri,τ,t for the ith stock at time t, over the
elapsed time τ > 0 is

ri,τ,t :=
pi,t

pi,t−τ

, i = 1, . . . , N and t ∈ T .

Usually, one is interested in daily, weekly, monthly, quarterly and/or
yearly returns. Therefore, it is natural to see τ with one of these time
lengths. From now on, except otherwise stated, we will focus on monthly
returns. Hence, we remove the index τ work on a discret time basis,
T := {1, . . . , n}.

To continue our exposition, we need to introduce some definitions and
assumptions. The first assumption is very strong: we will suppose, from
now on, that the distribution measure (or law) of the returns does not
depend on t ∈ T , that is, the random vector r of the returns is

r : (Ωr, Ar, Pr) −→ (Rn
>0, BRN

>0
, Pr)

ω 7−→ r(ω) = y,

2Refer to [7].
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where Ωr is the sample space of r, Ar the σ-algebra and Pr is the prob-
ability measure on (Ωr, Ar), and Pr is the distribution measure of the
random vector r. To avoid overloading the notation, we will suppose
that we are at a certain predefined period of our evolving process, say
t ∈ T is t = j∗ ∈ Z>0 for a fixed j∗. All of the following definitions are
easily extendable for all t ∈ T .

Definition 2. The budget equation for an investor with initial wealth
x > 0, assuming to hold Xi > 0 shares of stock i, i = 1, . . . , N , is

N∑

i=1

Xipi = x.

Definition 3. The portfolio weight vector π = (π1, . . . , πN) is de-
fined by

πi :=
Xipi

x
, i = 1, . . . , N.

Definition 4. The portfolio return, for a portfolio weight vector π,
is defined by

rπ :=
N∑

i=1

πiri.

For Definition 2 to be coherent, one has to assume that each stock
is perfectly divisible, that is, one can hold Xi ∈ R>0 shares of stock
i, i = 1, . . . , N . Also from Definition 2, we do not allow short selling,
that is Xi ≮ 0 ∀ i ∈ {1, . . . , N}. We also assume that each random
variable ri is integrable with respect to it’s probability measure, that is
E[ri] =: µi < +∞, which is nothing more than the expected return for
the stock i.

We can now define the following important quantity:

Definition 5. The portfolio expected return is defined by

E[rπ] :=
N∑

i=1

πiµi = 〈π|µ〉,

where π = (π1, . . . , πN) is the portfolio weight vector, µ = (µ1, . . . , µN)
is the vector containing the expected returns of each stock and 〈·|·〉 rep-
resents the usual scalar product.
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Because of the randomness of the value of the stocks, the value of the
budget equation may be larger or smaller than x after a certain time.
Therefore, since the value of the budget equation being smaller than x
is unwanted, there exists a notion of ‘risk’ when one invests an amount
x in the stock market. Automatically, the question of how to measure
‘risk’, arises. If an answer is given, then, with the above definitions at
hand and assuming the choice of the market and a subset of stocks of
this market is done, our aim is to answer the following question:

Out of the total amount x, what are the weights π1, . . . , πN that should
be invested in the N stocks respectively if we want to minimize ‘risk’
but, at the same time, seeking a portfolio expected return greater or
equal to p (p being given in advance, and p is to be seen as a return

greater or equal to the return of a risk free investment)?

There is no absolute answer to this question, and the answer will
of course depend on a very large number of variables, spreading from
economical, social and historical context from one side of the spectrum,
to the individual himself, his knowledge and information about markets
and his adversity to risk and confidence on his decisions, on the other
side of the spectrum.

To answer this question, we now present the main ideas of the work
of H. Markowitz. His article, Portfolio Selection [7], begins with ‘The
process of selecting a portfolio may be divided into two stages. The first
stage starts with observation and experience and ends with beliefs about
future performances of available securities. The second stage starts with
the relevant beliefs about future performances and ends with the choice
of portfolio’3.

It is the second stage that we are interested in. In Markowitz’s
article, the guiding idea of the rule to be applied in the seconde stage is
‘diversification’. ‘Diversification is both observed and sensible; a rule of
behavior which does not imply the superiority of diversification must be
rejected both as a hypothesis [about investment behavior ] and as a maxim
[about investment behavior ]’4. Even though it is stage 2 that delivers an
answer to our question, there is an important element in stage 1 that we
must take into consideration. This concerns the task of calculating the

3Refer to [7]
4Refer to [7]
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parameter set Φ that determines the probabilistic model for the stock
returns. Markowitz’s approach suggests to consider (µ, σ) as deter-
mining parameters where µ = (µ1, . . . , µN) is the vector containing the
expected returns of each stock and σ := (σi,j)i,j∈{1,...,N} is the variance-
covariance matrix of the returns for the N stocks, i.e. σi,j := Cov[ri, rj]
is the variance (when i = j) and covariance (when i 6= j) for the returns
of stocks i and j. Markowitz implicitly makes the hypothesis that the
returns are square integrable random variables, i.e. E[r2

i ] < +∞ ∀ i. It
is with the help of these two parameters that Markowitz presents his
‘expected returns - variance of returns’ rule, that ‘implies diversification
for a wide range of µi, σi,j’

5.

Markowitz considers ‘the rule that the investor does (or should)
consider expected return a desirable thing and variance of returns an
undesirable thing ’6. He continues by saying that ‘the concepts “yield”
and “risk” appear frequently in financial writings. Usually if the term
“yield” were replaced by “expected yield” or “expected return,” and “risk”
by “variance of return,” little change of apparent meaning would result.’7.
Finally, he states that ‘variance is a well-known measure of dispersion
about the expected ’8. Therefore, Markowitz suggests to take the port-
folio variance that is defined below as a measure of risk.

5Refer to [7]
6Refer to [7]
7Refer to [7]
8Refer to [7]
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Definition 6. The portfolio variance is defined by

Var[rπ] = E[(rπ − E[rπ])2] = E[(
N∑

i=1

πiri −
N∑

i=1

πiµi)
2]

= E[(
N∑

i=1

πi(ri − µi))
2]

= E[
N∑

i=1

π2
i (ri − µi)

2 +
N∑

i=1

N∑

j=1

i6=j

πiπj(ri − µi)(rj − µj)]

=
N∑

i=1

π2
i E[(ri − µi)

2]
︸ ︷︷ ︸

=σi,i

+
N∑

i=1

N∑

j=1

i6=j

πiπj E[(ri − µi)(rj − µj)]
︸ ︷︷ ︸

σi,j

=
N∑

i=1

N∑

j=1

πiπjσi,j

=
(

π1 . . . πN

)








σ1,1 σ1,2 · · · σ1,N

σ1,2 σ2,2 · · · σ2,N
... . . . ...

σ1,N σ2,N · · · σN,N












π1
...

πN





= π⊤σπ.

2.1 Selecting the portfolio weights πi

We are now ready to follow Markowitz’s ‘expected returns - variance
of returns’ rule (E-V) to find an optimal portfolio. ‘The E-V rule states
that the investor would (or should) want to select one of those portfolios
which give rise to the (E,V) combinations [that are] efficient [. . . ] i.e.,
those with minimum V for given E or more and maximum E for given
V or less ’9. We will focus on the first part of the rule, i.e. ‘those with
minimum V for given E or more’10. This can be seen as the following
problem: minimize the portfolio variance Var[rπ] but, at the same time,
the portfolio expected return E[rπ] must be greater or equal than a given
lower bound, that is E[rπ] > p.

9Refer to [7]
10Refer to [7]
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Mathematically, this is formulated as:

Problem 1.
min
π∈RN

{Var[rπ]}

under the constraints

1. πi > 0 ∀ i ∈ {1, . . . , N}

2.
N∑

i=1

πi = 1

3. E[rπ] > p (for a given p) .

In other words

among all the theoretically possible portfolios π ∈ R, we only consider
the portfolios that satisfy the constraints, and within these portfolios,
we have to determine the one with the smallest risk (i.e. the smallest

variance).

Note: The type of portfolio management where we solve Problem 1
for each monthly period, will be called Markowitz portfolio management
type.

2.2 Solving the problem

Problem 1 is a quadratic optimization problem. This problem can be
solved by using standard quadratic programming algorithms. We will
not discuss these algorithms here. For our numerical experiments we will
use the quadratic optimization problem solver from Matlab. However,
two important questions must be answered:

I When is it possible to find a solution?

II Under what conditions do we have a unique solution, i.e. when do
we have a unique π∗ that solves Problem 1?

Let us answer the first question. Var[rπ] is continuous with respect
to π, therefore it will reach a minimum over all compact sets of RN . The
three constraints in Problem 1 define closed sets in RN and therefore
their intersection is closed. Together, constraints 1) and 2) define a
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bounded set, hence the three constraints form a closed bounded set in
RN , thus compact, and so, it is not difficult to see that for a solution to
exist, it must be in the feasible set, that is, it must satisfy the constraints
in Problem 1, i.e., p must be well chosen.

Concerning the second question, if the matrix σ is positive definite
and invertible, then there is one and only one π that solves Problem 1
(refer to Appendix A).

This concludes Stage 2. This can be summarized by the following
diagram:

STAGE 1
Information
and analysis

Determining µ

and σ

−→
STAGE 2
Rule with
constraints

N∑

i=1

πi = 1

πi > 0, i = 1, . . . , N
E[rπ] > p

−→
OUTPUT OF RULE
Optimized portfolio
π0 = (π1, . . . , πn)

If we work with three stocks, we can give a geometric illustration of
the situation. We will proceed in the same way as Markowitz did in [7,
pp 83]. The main idea is that one can express the variable π3 in function
of the other two (π1 and π2) with the help of the third constraint (i.e.
∑3

i=1 πi = 1). We can therefore work in two dimensional geometry. We
have chosen three different stocks

I Český Telecom, a telecommunication operator quoted on the Prague
Stock Exchange,

II Mol Magyar Olaj- ES Gazipari, an oil and gas company quoted
on the Budapest Stock Exchange,

III Millennium Bank, a bank quoted on the Warsaw Stock Exchange.
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Figure 2.1: Company symbols of the three stocks.

In diagram below, the feasible set is the triangle (0, 0)(1, 0), (1, 0)(0, 1), (0, 1)(0, 0)

(black segments). In blue, we have the contour lines of the portfolio
variance Var[rπ], where we have made the adequate substitution: π3 =
1 − π1 − π2. Analytically, this gives us the two variable function

V (π1, π2) = π2
1(σ1,1 − 2σ1,2 + σ3,3) + π2

2(σ2,2 − 2σ2,3 + σ3,3)

+2π1π2(σ1,2 − σ1,3 − σ2,3 + σ3,3) + 2π1(σ1,3 − σ3,3)

+2π2(σ2,3 − σ3,3) + σ3,3,

where σi,j are the components of the variance-covariance matrix of the
returns. The small black dots as well as the small black circles repre-
sent the contour lines of the portfolio expected return E[rπ] with the
same substitution as above. This gives us, analytically, the two variable
function

E(π1, π2) = µ3 + π1(µ1 − µ3) + π2(µ2 − µ3),

where µi are the expected returns for each stock. To not over complicate
the diagram, we have shown only two contour lines: E = 1.5% and
E = 2%. The thick blue point shows the respective weights π1 and π2

for the stocks of Česk Telecom and Mol and their weights were calculated
by solving Problem 1 with p = 2% (i.e. asking for a 2% or more monthly
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return). For this, we have taken a sample set of 84 monthly returns,
dating from January 1999 to December 2005.
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Contour lines (VAR)
Optimal portfolio (Markowitz)
Expected return (1.5%)
Expected retrun (2%)
Delimiting feasible set

Figure 2.2: Contour lines of the portfolio variance and expected return with the optimal
portfolio.

2.3 Difficulties and limitations

What about the first stage? We must deal with it in some way or an-
other, if we want to determine numerical optimized portfolios. Although
Markowitz, in a footnote, writes . . .

‘This paper does not consider the difficult question of how investors do
(or should) form their probability beliefs [. . . ] (µi, σij) ’11.

and in his ending paragraphe he stresses the point that . . .

‘In this paper we have considered the second stage in the process of
selecting a portfolio. This stage starts with the relevant beliefs about the
securities involved and ends with the selection of a portfolio. We have
not considered the first stage: the formation of the relevant beliefs on

the basis of observation’12.

he does, however, say that . . .

‘One suggestion as to tentative µi, σij is to use the observed µi, σij for
some period of the past.’13

11Refer to [7]
12Refer to [7]
13Refer to [7]
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However, is the past a reliable source of information? How ‘long’
is the past, i.e. how much data has to be collected? Last, but not
least, is the portfolio variance a ‘good’ measure of risk? Large positive
returns, for a certain stock, would be considered, by the investor, as a
positive property. However, this property will make the stock’s variance
relatively big and this has a negative impact when it comes to minimizing
the portfolio variance. In the next section, we introduce another risk
measure from the literature.

3 A more recent approach: CVaR

When one invests in stock markets, it is almost inevitable to encounter
temporary losses, but large losses are definitely unwanted. Therefore,
one is interested in studying the losses to see if it is possible to define
‘risk’ in another way than only regarding the portfolio variance as a risk
measure. One can interpret ‘risk’ by saying that a ‘risky’ investment
is one that might have large losses. One way to quantify losses is to
proceed in the following manner.

We suppose that a random vector r of the returns has a density ρ,
that is, by definition,

ρ : RN
>0 −→ R>0

is a positive Borel measurable function verifying

Pr(A) =

∫

A

ρ(y) dy ∀ A ∈ BRN
>0

.

Let Π ⊂ RN be the set of the available portfolios, i.e. Π := {π ∈
RN |πi > 0, i = 1, . . . , N and

∑N
i=1 πi = 1} and the ith coordinate

corresponds to the weight in the portfolio of the ith stock. We consider
a function

f : Π × RN
>0 −→ R

(π, y) 7−→ f(π, y) := 1 − 〈π|y〉

that quantifies the loss associated with the portfolio π, where y is the
vector containing a sample of returns. Since y is the image of the random
vector r, then, for a fixed π, f(π, ·) is a random variable, that is

f(π, ·) : (RN
>0, BRN

>
, Pr) −→ (R, BR, Pf(π,·))

y 7−→ 1 − 〈π|y〉,
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where BR is the Borel σ-algebra on R and Pf(π,·) is the distribution
measure of the random variable f(π, ·).

We are interested in the probability of not exceeding a loss of α > 0.
This is given by

Pf(π,·)((−∞, α]) = Pr({y ∈ RN
>0|f(π, y) ∈ (−∞, α]}) =

∫

f(π,y)6α

ρ(y) dy

Therefore, the last term in this equality, can be seen as

Ψ : Π × R −→R

(π, α) 7−→

∫

f(π,y)6α

ρ(y) dy.

By definition, for a fixed π, Ψ(π, ·) : R −→ [0, 1], is the cumulative
distribution function (CDF) for the losses associated with the portfolio
π. It is nondecreasing with respect to α. We assume that the CDF is
continuous with respect to α, implying that the set of y with f(π, y) = α
has probability zero, i.e.,

∫

f(π,y)=α

ρ(y) dy = 0

3.1 Defining Conditional Value-at-Risk (CVaR)

Definition 7. For a fixed π ∈ Π, for a fixed β ∈]0, 1[ that is to be seen
as a probability level, the VaR and CVaR for the loss f(π, ·) are denoted
by αβ,π and φβ,π respectively and they are defined by

αβ,π = min{α ∈ R|Ψ(π, α) > β}

φβ,π = (1 − β)−1

∫

f(π,y)>αβ,π

f(π, y)ρ(y) dy.

Remarks and interpretations

I αβ,π exists. This is because we assumed that Ψ(π, ·) is continuous
and nondecreasing with respect to α so there must be at least one
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α0 such that Ψ(π, α0) = β. Since Ψ(π, ·) is not necessarily a strictly
increasing function, but it is continuous with the properties that

lim
α→∞

Ψ(π, α) = 1 and lim
α→−∞

Ψ(π, α) = 0,

the set of α ∈ R such that Ψ(π, α) = β form a bounded interval,
that is closed because Ψ(π, ·) is continuous. In this case, αβ,π is the
left endpoint of this interval.

II VaR is the lowest amount αβ,π such that, with probability β, the
loss will not exceed αβ,π. In other words, αβ,π can be seen in the
following manner: for the portfolio π, there is (1 − β) probability
of losing αβ,π or more.

III φβ,π is the conditional expectation of losses above the amount αβ,π.
In other words, the probability average (expected value) within the
losses that have less than (1 − β) probability of occurring, is φβ,π.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Losses

Distribution function of losses

α
β

Probability of
1 − β

Figure 3.1: Example of a loss distribution with its VaR indicated

14



With these remarks and interpretations, it is fair to say that CVaR
can be seen as a measure of risk. VaR can also be seen as a risk measure.
We will not deal with the difficulties in calculating it, which is beyond
the scope of this project. However, already from a theoretical point of
view, VaR has one main disadvantage compared to CVaR. It may happen
that a portfolio has a small VaR but its distribution is such that it may
still have very disastrous events (losses of 60% and over, for example)
with relatively high probability of occurring. This is not captured in the
single real number αβ,π. On the other hand, CVaR is well adapted to this
scenario since, in this case, the CVaR will be relatively large: being an
expected value, the disastrous events with high probability of occurring
will have a strong impact on the CVaR and thus the CVaR is sensitive
to this circumstance.

We would like to have CVaR as a convex function of π, which would
be coherent with the idea of diversifying the assets and not placing the
entire investment into one stock. We would also want an efficient method
to find, among all the portfolios that we are interested, the portfolio
that minimizes the CVaR (i.e., the portfolio with minimum ‘risk’). In
particular, the method should avoid approximating the density function
ρ, which in practice is rarely known.

For this task, we will follow what Rockafellar and Uryasev did
in [11]. The idea is to work with the following function:

Fβ : Π × R −→ R

(π, α) 7−→ α + (1 − β)−1

∫

y∈RN
>0

[f(π, y) − α]+ρ(y) dy

where

[t]+ =

{
t when t > 0
0 when t 6 0

This function is well defined (i.e. the integral
∫

y∈RN
>0

[f(π, y)−α]+ρ(y) dy <

+∞) if we suppose that E[|f(π, y)|] < +∞ ∀ π ∈ Π. Since [f(π, y) −
α]+ρ(y) is positive ∀ (π, α, y) ∈ Π × R × RN

>0, then to see that the
function is well defined, it is sufficient to find an upper bound for the
integral

∫

y∈RN
>0

[f(π, y)−α]+ρ(y) dy (i.e. an increasing bounded sequence
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converges).

0 6

∫

y∈RN
>0

[f(π, y) − α]+ρ(y) dy 6 |

∫

y∈RN
>0

[f(π, y) − α]+ρ(y) dy|

6

∫

y∈RN
>0

|f(π, y) − α|ρ(y) dy

︸ ︷︷ ︸

=E[|f(π,y)|]<+∞

+ |α|

∫

y∈RN
>0

ρ(y) dy

︸ ︷︷ ︸
=1

.

The motivation to work with this function comes from the following
reasoning: let α be such that Ψ(π, α) = β. Then Pr(f(π, y) > α) = 1−β
and

E[f(π, y)|f(π, y) > α] = (1 − β)−1

∫

f(π,y)>α

f(π, y)ρ(y) dy

=
E[f(π, y)χ{f(π,y)>α}(y)]

Pr(f(π, y) > α)

=
E[αχ{f(π,y)>α}(y) + [f(π, y) − α]+]

Pr(f(π, y) > α)

= α + (1 − β)−1E
[
[f(π, y) − α]+]

]

A property of Fβ(π, α) is that it is convex with respect to (π, α). To
see this, we will proceed in several steps.

First of all, ∀ y ∈ Rn
>0 fixed, the function (π, α) 7−→ f(π, y) −

α is affine, and hence convex. Secondly, ∀ y ∈ RN
>0, the function

(π, α) 7−→ [f(π, y) − α]+ is convex since it is the composition of the
function (π, α) 7−→ f(π, y) − α with the nondecreasing convex function
t 7−→ [t]+ and by the following lemma, the composition is convex.

Lemma 1. Let g be a convex function from RN to R and let ϕ be a convex
function from R to R which is nondecreasing. Then h(x) := ϕ(g(x)) is
convex.

Proof. For all x, y ∈ RN and λ ∈ ]0, 1[, we have by definition

g(λx + (1 − λ)y) 6 λg(x) + (1 − λ)g(y)
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Now ϕ is nondecreasing, therefore, applying ϕ to both sides of the in-
equality yields

h(λx + (1 − λ)y) 6 ϕ(λg(x) + (1 − λ)g(y))

6 λϕ(g(x)) + (1 − λ)ϕ(g(y))

= λh(x) + (1 − λ)h(y)

Therefore, h is convex.

Thirdly, it is clear that Fβ(π, α) = α + (1 − β)−1
∫

y∈RN [f(π, y) −
α]+ρ(y) dy is convex with respect to (π, α) whenever the integrand

g(π, α, y) := [f(π, y) − α]+ρ(y)

is convex with respect to (π, α). Defining G(π, α) :=
∫

y∈RN

g(π, α, y) dy

and from what we have seen above, we have, ∀π, π̌ ∈ RN ,∀ α1, α2 ∈ R
and λ ∈]0, 1[ that

g(λ(π, α1)+(1−λ)(π̌, α2), y) 6 λg((π, α1), y)+(1−λ)g((π̌, α2), y) ∀ y ∈ RN ,

and by taking the integral over all RN with respect to y leads to
∫

y∈RN

g(λ(π, α1) + (1 − λ)(π̌, α2), y) dy 6 λ

∫

y∈RN

g((π, α1), y) dy

+ (1 − λ)

∫

y∈RN

g((π̌, α2), y) dy

which, by definition, is

G(λ(π, α1) + (1 − λ)(π̌, α2), y) 6 λG(π, α1, y) + (1 − λ)G(π̌, α2, y),

and thus concludes the proof that Fβ(π, α) is convex with respect to
(π, α).

Another property of Fβ(π, α) is that it is continuous with respect to
(π, α). We will use the theorem in Appendix B. Let (π̌, α̌) ∈ Π×R and
define

I NM
(π̌,α̌) := {(π, α) ∈ Π × R| ‖(π, α)‖1 =

N∑

i=1

|πi| + |α| 6 M}
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II g(π, α, y) := [f(π, y) − α]+ρ(y)

For a fixed y ∈ RN , g(π, α, y) is continuous ∀ (π, α) ∈ Π × R and we
have seen that g(π, α, y) is integrable with respect to y ∈ RN , ∀ (π, α) ∈
Π×R. We must find a function h integrable with respect to y such that

∀ (π, α) ∈ Π × R, |g(π, α, y)| 6 h(y), ∀ y ∈ RN .

For (π, α) ∈ NM
(π̌,α̌0)

, we have

|[f(π, y) − α]+ρ(y)| 6 |1 − 〈π|y〉 − α|ρ(y)
6 (1 + |〈π|y〉| + |α|)ρ(y)
6 (1 + |α|)ρ(y) + ‖π‖2‖y‖2ρ(y) since Cauchy-Schwarz

6 (1 + |α|)ρ(y) + K2‖π‖1‖y‖1ρ(y) since ‖ · ‖2 6 K‖ · ‖1

6 (1 + M)ρ(y) + K2M‖y‖1ρ(y)

Therefore, if we suppose that
∫

y∈RN
>0

‖y‖1ρ(y) dy < +∞, then the function

h(π̌,α̌0,M)(y) := (1 + M)ρ(y) + K2M‖y‖1ρ(y)

is integrable and so the function (π, α) 7−→
∫

y∈RN

g(π, α, y)ρ(y) dy is con-

tinuous ∀ (π, α) ∈ Π × R. The hypothesis
∫

y∈RN
>0

‖y‖1ρ(y) dy < +∞ is

equivalent to ask that
∫

y∈RN
>0

yiρ(y) dy < +∞, i = 1, . . . , N , and this, by

definition, is the expected return for the stock i, (i.e. E[yi] < +∞, i =
1, . . . , N)(refer to Appendix C). Therefore, in our modeling, we only
have to require the existence of the first moment of the returns and no
longer the second moment, i.e., for the random vector Y of the returns,
we must have E[Y ] < +∞, which means

E[Y ] =

∫

y∈RN
>0

yρ(y) dy =









∫

y∈RN
>0

y1ρ(y) dy

...
∫

y∈RN
>0

yNρ(y) dy









< +∞
...

< +∞.

The next theorem gives us a useful method to calculate the CVaR for
a given portfolio π ∈ Π.
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Theorem 1 (Rockafellar & Uryasev (2000)). [11, Thm.1]

I As a function of α, Fβ(π, ·) is continuously differentiable.

II Defining the set Aβ,π by

Aβ,π := {s ∈ R|Fβ(π, s) = min
α∈R

{Fβ(π, α)}},

we have that Aβ,π is a nonempty closed bounded interval.

III For all π ∈ Π, the CVaR is

φβ,π = min
α∈R

{Fβ(π, α)}

Proof. We first have to show that Fβ(π, ·) is continuously differentiable
with respect to α. For π ∈ Π, let us compute the limit
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lim
h→0

Fβ(π, α + h) − Fβ(π, α)

h

= lim
h→0

1

h

[

α + h + (1 − β)−1

∫

y∈RN

[f(π, y) − (α + h)]+ρ(y) dy

− α − (1 − β)−1

∫

y∈RN

[f(π, y) − α]+ρ(y) dy
]

= lim
h→0

1

h

[

h + (1 − β)−1
( ∫

f(π,y)>α+h

(f(π, y) − (α + h))ρ(y) dy

−

∫

f(π,y)>α

(f(π, y) − α)ρ(y) dy
)]

= lim
h→0

1

h

[

h + (1 − β)−1
( ∫

f(π,y)>α+h

(f(π, y) − α)ρ(y) dy

−

∫

f(π,y)>α+h

hρ(y) dy −

∫

f(π,y)>α

(f(π, y) − α)ρ(y) dy
)]

= lim
h→0

[

1 +
(1 − β)−1

h

∫

f(π,y)∈(α,α+h)

(f(π, y) − α)ρ(y) dy

− (1 − β)−1

∫

f(π,y)>α+h

ρ(y) dy
]

,

where (α, α + h) is one of the two intervals [α, α + h] or [α + h, α],
depending on the sign of h.

We will show that the first term,

(1 − β)−1

h

∫

f(π,y)∈(α,α+h)

(f(π, y) − α)ρ(y) dy,
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converges to zero when h → 0. Taking the absolute value, we have:

0 6 |
(1 − β)−1

h

∫

f(π,y)∈(α,α+h)

(f(π, y) − α)ρ(y) dy |

6
(1 − β)−1

|h|

∫

f(π,y)−α∈(0,h)

|h|ρ(y) dy

= (1 − β)−1

∫

f(π,y)−α∈(0,h)

ρ(y) dy.

Now, to see that ∫

f(π,y)−α∈(0,h)

ρ(y) dy −−→
h→0

0, (3.1)

we define the sets

Ah := {y ∈ RN
>0|f(π, y) − α ∈ (0, h)} A0 := {y ∈ RN

>0|f(π, y) − α = 0}

and the two functions:

ζh : RN
>0 −→ R ζ0 : RN

>0 −→ R
y 7−→ ρ(y)χAh

(y) y 7−→ ρ(y)χA(y)

We have that:

I ζh −→ ζ0 pointwise on y, if h → 0

II |ζh(y)| 6 ρ(y) ∀ h and ∀ y ∈ RN

Therefore, by the Dominated Convergence Theorem (D.C.T.) (refer to
Appendix D), we have:

∫

f(π,y)−α∈(0,h)

ρ(y) dy =

∫

y∈RN

ζh(y) dy
D.C.T
−−−→

h→0

∫

y∈RN

ζ0(y) dy. (3.2)

Since f is affine, the set A is a subspace of RN of dimension N − 1.
Therefore, it is a negligible set for the N dimensional Lebesgue measure.
Consequently, the value of the integral of ζ0 in RN will be zero.

Looking at the last term, we have
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lim
h→0

(1 − β)−1

∫

f(π,y)>α+h

ρ(y) dy = (1 − β)−1
(∫

f(π,y)>α

ρ(y) dy +

∫

f(π,y)−α∈(0,h)

ρ(y) dy
)

= (1 − β)−1

∫

f(π,y)>α

ρ(y) dy.

This is because the second term converges to zero because of the Limit
3.1. and hence

lim
h→0

Fβ(π, α + h) − Fβ(π, α)

h
= 1 − (1 − β)−1

∫

f(π,y)>α

ρ(y) dy.

Defining a function γ by

γ : R −→ R

α 7−→

∫

f(π,y)−α>0

ρ(y) dy,

and given α and α̌ in R close to each other (for example, α = α̌ + h

for a certain h), then, by the Limit 3.2, the difference

|γ(α) − γ(α̌)| −−→
h→0

0

converges to zeros, thus showing the continuity with respect to α of our
derivative.

By what we have seen then, Fβ is continuously differentiable with
respect to α with derivative

∂Fβ

∂α
(π, α) = 1 − (1 − β)−1

∫

f(π,y)>α

ρ(y) dy,

and by definition of Ψ, we have

∂Fβ

∂α
(π, α) = 1 − (1 − β)−1(1 − Ψ(π, α))

= (1 − β)−1[1 − β − 1 + Ψ(π, α)]
= (1 − β)−1[Ψ(π, α) − β].

Knowing that Fβ is convex, for a given π ∈ Π, a point where the
derivative of Fβ(π, ·) vanishes, is the minimum of the function (refer
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to Appendix E). This minimum is attained by one or more α ∈ R,
that, by definition, are in Aβ,π, and are precisely the ones that satisfy
∂Fβ

∂α
(π, α) = 0 which is equivalent to Ψ(π, α) − β = 0. As discussed

above in the remarks, the set of α that satisfy this last condition form
an nonempty closed bounded interval. This concludes the second point
of the theorem.

With the following calculations, we will show the third point of the
theorem. By definition of αβ,π, we have αβ,π ∈ Aβ,π, so that

min
α∈R

Fβ(π, α) = Fβ(π, αβ,π) = αβ,π +(1−β)−1

∫

y∈RN

[f(π, y)−αβ,π]
+ρ(y) dy.

Looking at the integral, we have
∫

f(π,y)>αβ,π

(f(π, y) − αβ,π)ρ(y) dy =

∫

f(π,y)>αβ,π

f(π, y)ρ(y) dy − αβ,π

∫

f(π,y)>αβ,π

ρ(y)dy.

In the above, the first integral is, by Definition 7, (1− β)φβ,π and the
second integral is 1 − Ψ(π, αβ,π), but Ψ(π, αβ,π) = β. Thus,

min
α∈R

Fβ(π, α) = αβ,π + (1 − β)−1[(1 − β)φβ,π − αβ,π(1 − β)] = φβ,π .

This concludes the third point of Theorem 1 and completes the proof.

The theorem above permits us to see, without ambiguity, φβ,π as a
function of π, that is:

φβ : Π −→ R
π 7−→ φβ(π) := min

α∈R
{Fβ(π, α)},

and we are interested to find a minimum with respect to π ∈ Π. For the
CVaR seen as a measure of risk, this would represent the search for the
portfolio π ∈ Π that has minimum risk. Since φβ is continuous (because
it is the minimum with respect to another variable of a continuous func-
tion) over a compact set, then the minimum minπ∈Π{φβ(π)} is attained
and so we have (refer to Appendix F)

min
π∈Π

{φβ(π)} = min
π∈Π

{min
α∈R

{Fβ(π, α)}} = min
(π,α)∈Π×R

{Fβ(π, α)}.
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We are also interested in having φβ as a convex function with respect
to π, that is, we want to have ∀ π, π̌ ∈ Π and λ ∈ (0, 1)

φβ(λπ + (1 − λ)π̌) 6 λφβ(π) + (1 − λ)φβ(π̌)

To see this, we proceed as follow: by definition of min, we have for all
ǫ > 0, ∃ α1, α2 such that

Fβ(π, α1) 6 φβ(π̌) + ǫ and Fβ(π̌, α2) 6 φβ(π̌) + ǫ.

Multiplying the first inequality by λ, the second by (1 − λ) and adding
them together, yields in:

λ(φβ(π) + ǫ) + (1 − λ)(φβ(π̌) + ǫ) > λFβ(π, α1) + (1 − λ)Fβ(π̌, α2)

> Fβ(λ(π, α1) + (1 − λ)(π̌, α2))

= Fβ(λπ + (1 − λ)π̌, λα1 + (1 − λ)α2)

> φβ(λπ + (1 − λ)π̌)

and this gives us

λφβ(π) + (1 − λ)φβ(π̌) + ǫ > φβ(λπ + (1 − λ)π̌)

Letting ǫ → 0, we obtain the desired result, the convexity of the risk
function.

Having introduced another measure of risk, and studied its properties,
we can now define a new strategy for portfolio selection.

Problem 2.
min

(π,α)∈Π×R
{Fβ(π, α)}

under the constraints

1. πi > 0 ∀ i ∈ {1, . . . , N}

2.
N∑

i=1

πi = 1

3. E[rπ] > p (for a given p)

Note: the first two constraints are redundant since all π ∈ Π satisfy
them. However, we decide to write them out again to have the same
presentation as Problem 1, and thus making the analogy easier in one’s
mind.
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3.2 Determining the portfolio with smallest CVaR

Taking variance as a risk measure, we were confronted to solve a quadratic
programming problem. This new risk measure, CVaR, seems difficult to
minimize because it involves the distribution ρ, which is a difficult quan-
tity to approximate numerically. However, we now show that one can
reduce the optimization problem to a linear programming problem.

The expectation term in Fβ(π, α) (that is, the integral), can be ap-
proximated by using a historical sample set {yj}

n
j=1 of stock returns, and

this gives the approximated function

F (π, α) = α+(1−β)−1

∫

y∈RN
>0

[f(π, y)−α]+ρ(y) dy ≃ α + µ

n∑

j=1

[1 − 〈π|yj〉 − α]+

︸ ︷︷ ︸

=:F̃β(π,α)

,

where µ = (n(1 − β))−1. If we introduce the auxiliary real variables
zj, j = 1, . . . , n, then solving Problem 2 (with the function F̃β) , is equiv-
alent (refer to Appendix G) to solving the following linear programming
problem:

Problem 3.

min
(π,α,z)∈RN×R×Rn

{α + µ

n∑

j=1

zj}

under the constraints

1. πi > 0 ∀ i ∈ {1, . . . , N}

2.
N∑

i=1

πi = 1

3. E[rπ] > p (for a given p)

4. zj > 0 ∀ j ∈ {1, . . . , n}

5. zj > 1 − 〈π|yj〉 − α ∀ j ∈ {1, . . . , n}

where µ = (n(1 − β))−1 .

Our objective function in Problem 3, is only a scalar product between

the variable (π1, . . . , πN , α, z1, . . . , zn) and the vector (0, . . . , 0
︸ ︷︷ ︸

=N

, 1, µ, . . . , µ
︸ ︷︷ ︸

=n

)
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and all the constraints form convex sets and so the feasible set (i.e. the
intersection of all the constraint sets) is convex. Therefore the optimiza-
tion Problem 2 has been reduced to a linear programming problem.

Note: The type of portfolio management where we solve Problem 3 for
each monthly period, will be referred as Min CVaR portfolio management
type.

Again we can ask about the existence and uniqueness of the solution
π∗ to Problem 2. From the discussion above we have

min
(π,α)∈Π×R

{Fβ(π, α)} = min
π∈Π

{min
α∈R

{Fβ(π, α)}} = min
π∈Π

{φβ(π)}.

Because φβ(π) is continuous, our theoretical Problem 2 will have a solu-
tion on all compact set of RN . Again, if there is an appropriate choice
for p, then the constraints for Problem 2 are a nonempty compact set
in RN , and thus a minimum exists. For uniqueness, it can be shown
(refer to Appendix H), that for N = 2, the Hessian matrix of Fβ(π, α) is
a positive definite matrix, and since the function is convex, it therefore
has one, and only one (π∗, α∗) that realizes the minimum. We still need
to further investigate for the case where N is arbitrary.

As for Problem 1, we show a two dimensional illustration of the sit-
uation. In red, we have the contour lines for the objective function F̃β,
were we have fixed α = 0.1296. This α corresponds to the α that, with
the optimal portfolio (the thick red point), minimizes F̃β. The same data
and the same value of p were taken as for Figure 2.2.
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Figure 3.2: Contour lines of the the objective function and expected return with the
optimal portfolio.
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4 The new approach using entropy

‘I believe that better methods [. . . to find µi and σi,j . . . ], which take into
account more information, can be found.’14, says Markowitz. Even if
we have this ‘information’, are we certain that it is reliable? And, what
about if we do not have this ‘information’? Supposing that we are not
able to determine the probability model, to calculate the parameter set
Φ or to verify the necessary assumptions and to quantify other variables.
What can we do?

4.1 The SHANNON entropy

1) Phys Grandeur qui, en thermodynamique, permet d’valuer la dgradation de l’nergie d’un systme.

‘L’entropie d’un systme caractrise son degr de dsordre.’

2) Cybern Dans la thorie de la communication, nombre qui mesure l’incertitude de la nature d’un

message donn partir de celui qui le prcde (l’entropie est nulle quand il n’existe pas d’incertitude).
15

If one states that ‘randomness’ is omnipresent, we can agree up to
some point where, we will argue that there are some phenomena that
are ‘more random’ than others, or, in other words, there are some sys-
tems that work very deterministically or, are said to be very certain,
while others seem to be very hazardous, or, are considered to be very
uncertain. Very quickly, we are faced with the following questions

I How ‘much’ randomness is contained in a system?

II How uncertain is the phenomenon?

The notion of entropy tries to answer this question.

4.2 Empirical approach

We will place our discussion in a financial environment and introduce
the notion in two steps.

I If we are very certain that the kth stock in our universe has good
chances for positive returns and its risk is low and that we are

14Refer to [7]
15Petit Larousse
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confident about our choice, then we should invest a relatively large
proportion of x (our initial amount) in it. This gives

πk ≃ 1 ⇐⇒
1

πk

≃ 1 ‘small’.

If, on the other hand, we are very uncertain about the returns and
risk of the jth stock, then we should invest a relatively small pro-
portion of x in it. This gives

πj << 1 ⇐⇒
1

πj

>> 1 ‘large’.

Therefore, as a measure of uncertainty about our decision, we can
take 1

πi
.

II It is a well established fact that our perception (or our understand-
ing) of a signal (this could be a variable or some information that
we managed to quantify) is proportional to the logarithm of this
signal, i.e.

log(‘signal’) ∼ perception (or understanding)

With these two ideas at hand, we can summarize our situation by

Uncertainty in the decision concerning the ith stock ∼ log(
1

πi

) .

Since we are concerned with N stocks, then we are interested in the
aggregated quantity

1

N

N∑

i=1

− log(πi).

However, it seems more realistic to take the weighted average, i.e.

−
N∑

i=1

πi log(πi).

This can be defined as the entropy of a portfolio. We give a formal def-
inition after we have presented the axiomatic approach, in the following
subsection.
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4.3 Axiomatic approach

My greatest concern was what to call it. I thought of calling it ‘information’. But the word was

overly used, so I decided to call it ‘uncertainty’. When I discussed it with John Von Neumann, he had a

better idea. He told me: ≪ You should call it entropy, for two reasons. In first place, your uncertainty

has been used in statistical mechanics under that name, so it already has a name. In second place,

and more important, no one knows what entropy really is, so in a debate you will always have the

advantage.≫
16

We will now present the axiomatic version for defining the entropy of
a portfolio. We will not give the axioms in one block but rather present
them along our discussion. Let us consider the two extreme situations.
If on one side, we reject the assumption that the future is unpredictable
and that everything can be calculated deterministically, or that, after
gathering all the necessary information, we conclude that the ith stock
will have the largest return and we are certain about our decision, then
the portfolio π should be of the form π = (0, . . . , 1︸︷︷︸

i

, . . . , 0). If, on the

other hand, we are uncertain about everything or we have no information
at all, then the most rational way to construct a portfolio would be
π = ( 1

N
, . . . , 1

N
). Between these two extremes situations, is it possible

to construct a function H that takes a portfolio as its argument and
associates to this portfolio, a quantity that reflects the certainty (or
uncertainty) of our decision, which is linked to the portfolio, or more
precisely, which is linked to how the portfolio is composed? We might
answer this question if we introduce several assumptions on the function
H. Up to now, we can summarize the situation by

It is known which
investment will have
the largest return.

−→
We know

what to do.
−→

Portfolio
π = (0, . . . , 1, . . . , 0)

H(π) = 0

It is unknown which
investment will have
the largest return.

−→
We do not

know what to
do.

−→
Portfolio

π = ( 1
N

, . . . , 1
N

)
H(π) = max

16C. SHANNON, quoted in [13], page 20
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Note: by convention, we have chosen H(π) = 0 when ‘We know what
to do’ and H(π) = max when ‘We do not know what to do’.

As a preliminary axiom, we impose

H(π1, . . . , πN) = H(πσ(1), . . . , πσ(N))

for all σ ∈ Sym(N), where Sym(N) is the group of all the permutations
of {1, . . . , N}. This means that our certainty of our decision in investing,
for example (if N = 3), 70% in the first stock, 20% and 10% in the second
and third stock respectively, is the same as if we would have invested
20% in the first stock, 10% and 70% in the seconde and third stock
respectively.

Having introduce this idea, we are able to define the domain set of
the function H

H : Π/Sym(N) −→ R>0,

where Π/Sym(N) is the set of all the orbits. This means that for all
π ∈ Π, we define the action of the group by

σ ¦ π = σ ¦ (π1, . . . , πN) := (πσ(1), . . . , πσ(N))

where σ ∈ Sym(N). The orbit π̄ is the set {σ ¦ π | σ ∈ Sym(N)}. Then

Π/Sym(N) := {x̄ | x ∈ Π}.

Intuitively, this means that an element (π1, 0, 0, π4, 0, 0, π7) in Π/Sym(N)
is the same as (π7, 0, π4, 0, 0, π1, 0), which again is the same as (π1, π4, π7, 0, 0, 0, 0).

To not overload our notation, we make the following simplification.
Let π ∈ Π. Let Iπ := {i1, . . . , ik} ⊂ {1, . . . , N} be the set of indices such
that πi = 0 for all i ∈ {1, . . . , N} \ Iπ. From what we have seen above,
we have H(π) = H(πi1, . . . , πik, 0, . . . , 0). Our simplification is

H(πi1, . . . , πik︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

N−k

) = H(πi1, . . . , πik︸ ︷︷ ︸

k

)

We now introduce axioms for the function H. Let us look at the case
where there is very little information, but enough to decide if there are
some stocks that will not be chosen. Let N be the number of stocks in

the universe. We define f(j) := H(
1

j
, . . . ,

1

j
︸ ︷︷ ︸

j

) for j ∈ Z>1. We impose

the following conditions on f called Axiom I:
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I f(N) must be the maximum value of H.

II f(·), as a function of the number of chosen stocks in the universe,
is a strictly increasing function. The idea behind this is that if one
takes n < N securities, this means that the investor has ‘some’
information since he decides not to invest in the N −n other stocks.

III f(1) = 0, meaning that there is either total determinism or that the
investor is completely sure about investing the hole of the value x

into one stock.

Suppose that there exists M, L ∈ Z>0 such that ML = N . Let us
consider M baskets of stocks in the universe, all of them having L stocks.
Suppose that we are still in the case where there is very little information
available, or that the market seems totally unpredictable. We impose on

f(ML) = H(
1

ML
, . . . ,

1

ML
)

the following property: the certitude of deciding to invest in the jth bas-
ket does not influence the uncertainty in deciding how to invest among
the L stocks. In other words, if we decide to invest only in one basket,
then the remaining uncertainty in deciding how to compose the portfolio
after having chosen the basket, is f(L), that is

f(ML) − f(M) = f(L) ⇔ f(ML) = f(M) + f(L) Axiom II

Let us now look at the case where we have some information that
we can rely on to make our decision, that is, among the j 6 N stocks,
we decide to invest with the portfolio π = (π1, . . . , πj). Therefore, the
quantity H(π) reflects our certainty (or uncertainty) of our decision.

Let A et B be two nonintersecting subsets of stocks of the portfolio
with |A| = r and |B| = j − r as their respective cardinals. The weights
of A and B are

πA = π1 + · · · + πr and πB = πr+1 + · · · + πj

respectively. Our aim is to link H(π) and H(πA, πB), where H(πA, πB)
is to been seen as the uncertainty in deciding between the subset A or
the subset B.
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If we know for sure that we have to invest in the subset A, then the
uncertainty in deciding among the portfolio based on the subset A is

H(
π1

πA

, . . . ,
πr

πA

)

On the other hand, if we know for sure that we have to invest in the
subset B, then the uncertainty in deciding among the portfolio based on
the subset B is

H(
πr+1

πB

, . . . ,
πj

πB

)

We claim (postulate) that the remaining uncertainty in deciding the
portfolio composition, knowing in which subset (either A or B) one must
invest in, must be the average of the two ‘conditional’ uncertainties in
deciding. This leads to

H(π) = H(πA, πB) + πAH(
π1

πA

, . . . ,
πr

πA

) + πBH(
πr+1

πB

, . . . ,
πj

πB

) Axiom III

For technical reasons, we need to impose a continuity condition,

q −→ H(q, 1 − q)
Axiom IV

is continuous over (0, 1) (and q ∈ (0, 1)).

The task to find such a function might seem difficult, but with the
help of the following theorem, we know exactly how H is defined.

Theorem 2. [13] H is a function that satisfies Axioms I,. . . ,IV if, and
only if

H(π1, . . . , πN) = −C

N∑

i=1

πi log(πi),

where C ∈ R>0.

Remark: πi log(πi) = 0 if πi = 0 for a certain i ∈ {1, . . . , N}. This is
because of the fact that: limx→0 x log(x) = 0.
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Proof. [⇒] The first step of the proof is to show that f(M) = C log(M)
where M ∈ Z>2 and C ∈ R>0. By Axiom II we have, for s ∈ Z>1,

f(s2) = f(ss) = f(s) + f(s) = 2f(s)

and by induction f(sk) = kf(s) for all k ∈ Z>1. We fix M ∈ Z>2 and let
r ∈ Z>0. We know that there is a unique k such that 2r ∈ [Mk, Mk+1).
By Axiom I we have

since Mk
6 2r < Mk+1 then f(Mk) 6 f(2r) < f(Mk+1)

which yields, by the induction argument above,

kf(M) 6 rf(2) < (k + 1)f(M).

By the properties of the log function, we have

log(Mk) 6 log(2r) < log(Mk+1) and k log(M) 6 r log(2) < (k+1) log(M)

Hence

k 6 r
f(2)

f(M)
< k + 1 and k 6 r

log(2)

log(M)
< k + 1,

and therefore

|
f(2)

f(M)
−

log(2)

log M
| <

1

r
.

Since r was chosen arbitrarily, we have f(M) = (f(2)/ log(2)) log(M),
which concludes the first part of the proof.

The second part of the proof consists of showing that

H(q, 1 − q) = −C[q log(q) + (1 − q) log(1 − q)]. (4.1)

From now on, we will let C := f(2)
log(2) and keep in mind that the value

of C depends on the ‘initial value’ of f(2). We show (4.1) for q = r
s
∈

Q and by the continuity of the function H (Axiom IV ), the results
holds for all q ∈ (1, 0). Lets consider a portfolio with s stocks which is
uniformly weighted (that is, for the security i, its weight is πi = 1

s
for

all i ∈ {1, . . . , s}). We divide the set containing all the s stocks into
two subsets A and B, with |A| = r and |B| = s − r as their respective
cardinals. We therefore have, for the weights of A and B, πA = r 1

s
and

πB = (s − r)1
s

respectively. We also have

H(
π1

πA

, . . . ,
πr

πA

) = H(
1/s

r/s
, . . . ,

1/s

r/s
) = H(

1

r
, . . . ,

1

r
) = f(r),
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and

H(
πr+1

πB

, . . . ,
πs

πB

) = H(
1/s

(s − r)/s
, . . . ,

1/s

(s − r)/s
)

= H(
1

(s − r)
, . . . ,

1

(s − r)
) = f(s − r).

From Axiom III, we obtain

f(s) = H(
r

s
,
s − r

s
) +

r

s
f(r) +

s − r

s
f(s − r).

By the first step of the proof, we know the value of f(·) and letting
q := r

s
, we get

C log(s) = H(q, 1 − q) + qC log(r) + (1 − q)C log(s − r),

hence

H(q, 1 − q) = −C[q log(r) − log(s) + (1 − q) log(s − sq)] since r = sq

= −C[q log(r) − log(s) + (1 − q) log(s) + (1 − q) log(1 − q)]

= −C[q log(r) − q log(s) + (1 − q) log(1 − q)]

= −C[q log(
r

s
) + (1 − q) log(1 − q)]

= −C[q log(q) + (1 − q) log(1 − q)].

We have proved the second part of the proof.
In the third part of the proof, we proceed by induction. Let n ∈ Z>1

be the number of stocks under consideration. The second part of the
proof (4.1) shows the result of the theorem when n = 2. We suppose
that the result holds for n 6 N − 1, where N ∈ Z>2 is the number of
stocks in the universe. Let π = (π1, . . . , πN) be a chosen portfolio. We
again divide the set containing all the stocks into two subsets A and B,
with |A| = 1 and |B| = N −1 as their respective cardinals. Without loss
of generality, we place the first stock i = 1 in the subset A. We therefore
have, for the weights of A and B, πA = π1 and πB = 1− π1 respectively.
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By the third axiom, we have

H(π1, . . . , πN) = H(π1, 1 − π1) + π1H(π1

π1
)

+ (1 − π1) H(
π2

1 − π1
, . . . ,

πN

1 − π1
)

︸ ︷︷ ︸

to calculate H,we use the induction hypothesis

= −C[π1 log(π1) + (1 − π1) log(1 − π1)] + π1 H(1)
︸ ︷︷ ︸

=0

(1 − π1)(−C)
N∑

i=2

πi

(1−π1)
log( πi

(1−π1)
)

= −C
[

π1 log(π1) + log(1 − π1) − π1 log(1 − π1) +
N∑

i=2

πi(log(πi) − log(1 − π1))
]

= −C
[

π1 log(π1) +
N∑

i=2

πi log(πi) + log(1 − π1)

− log(1 − π1)
N∑

i=1

π1

︸ ︷︷ ︸
=1

]

Therefore H(π1, . . . , πN) = −C
N∑

i=1

πi log(πi).

[⇐] We will verify the axioms.

Verifying Axiom I Since log is an increasing function, we obtain, for
n < N, n, N ∈ Z>0 and for C > 0,

log(n) < log(N)
−C log( 1

n
) < −C log( 1

N
)

−C
n∑

i=1

1
n

log( 1
n
) < −C

N∑

i=1

1
N

log( 1
N

)

f( 1
n
, . . . , 1

n
) < f( 1

N
, . . . , 1

N
).

Therefore f as a function of the number of stocks in the universe,
is a strictly increasing function.
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Verifying Axiom II By definition of H, we have

H( 1
ML

, . . . , 1
ML

) = −C
ML∑

i=1

1
ML

log( 1
ML

)

= −C log( 1
ML

)
= −C(log( 1

M
) + log( 1

L
))

= −C
M∑

i=1

1
M

log( 1
M

) − C
L∑

i=1

1
L

log( 1
L
)

= H( 1
M

, . . . , 1
M

) + H( 1
L
, . . . , 1

L
),

and by the definition of f we have the second axiom.

Verifying Axiom III By hypothesis, we have

H(π1, . . . , πN) = −C

N∑

i=1

πi log(πi) with C ∈ R>0

Let
πA := π1 + · · · + πr and πB := πr+1 + · · · + πn

then

H(πA, πB) + πAH( π1

πA
, . . . , πr

πA
) + πBH(πr+1

πB
, . . . , πN

πB
)

= −C(πA log(πA) + πB log(πB)) + πA(−C
r∑

i=1

πi

πA
log( πi

πA
))

+πB(−C
N∑

i=r+1

πi

πB
log( πi

πB
))

= −C[πA log(πA) + πB log(πB) +
r∑

i=1

πi log( πi

πA
)

+
N∑

i=r+1

πi log( πi

πB
)]

= −C[πA log(πA) − log(πA)
r∑

i=1

πi

︸ ︷︷ ︸
=πA

+πB log(πB) − log(πB)
N∑

i=r+1

πi

︸ ︷︷ ︸
=πB

+
r∑

i=1

πi log(πi) +
N∑

i=r+1

πi log(πi)]

= −C
N∑

i=1

πi log(πi) = H(π1, . . . , πN).
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Verifying Axiom IV If N = 2, then, because x −→ x log(x) is con-
tinuous for x ∈ R>0,

H(π, 1 − π) = −C(π log(π) + (1 − π) log(1 − π))

is continuous, and hence the last axiom is verified, and we have
completed the proof.

From this theorem, we see that all the functions that have the proper-
ties that we are interested in, differ only by a constant C. It is therefore
reasonable to choose C = 1 for the function one wants to work with.
This gives us the following definition.

Definition 8. The entropy of a portfolio π is

H(π) = H(π1, . . . , πN) = −
N∑

i=1

πi log(πi).

Having introduced the notion of entropy, let us suppose that we know
very little about the returns of the stocks under consideration, but as-
sume that their first moment exists. It is then possible to construct
the vector µ, either from historical samples, or from qualitative based
financial information coming from banks, brokers or financial institu-
tions that we juge reliable. Then, we suppose that we know nothing else
and that we will not even introduce a risk measure in our rule to con-
struct our portfolio. This lack of information concerns our uncertainty
in deciding, therefore, at this stage, we should maximize the entropy
of our portfolio and thus, by doing so, it reflects the fact that we are
missing information that would otherwise allow us to construct, what
we would think to be more ‘certain’ portfolios. It is important to note
that maximizing the portfolio’s entropy does not violate Markowitz’s
guideline idea of ‘diversification’, since portfolios with a high entropy
are diversified: the one which has maximum entropy is the one that is
mostly distributed (diversified) throughout the N stocks of the universe.
This new approach having been introduced, we will expose the underly-
ing mathematical problem. Instead of maximizing H, we minimize −H,
which is of course equivalent.
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Problem 4.
min
π∈Π

{−H(π)}

under the constraints

1. πi > 0 ∀ i ∈ {1, . . . , N}

2.
N∑

i=1

πi = 1

3. E[rπ] > p (for a given p)

Note: The type of portfolio management where we solve Problem 4
for each monthly period, is, from now on, called Max Entropy.

4.4 Solving the problem

We can use a numerical solver for this problem. In our simulations, we
have used the fmincon function in Matlab, that minimizes a nonlinear
function with linear, and/or none linear constraints.

Asking ourselves about existence and uniqueness of a solution to Prob-
lem 4, we can again easily answer the first question by noting that −H is
continuous on the compact set Π and a solution exists if p is well chosen.

For uniqueness, refer to Appendix I.

We again show a two dimensional illustration of the situation. In
green, we have the contour lines for the entropy function. The thick
green point is the optimal portfolio according to this type of portfolio
management. The same data and the same value of p were taken as for
Figure 2.2 and Figure 3.2.
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Figure 4.1: Contour lines of the entropy function and expected return with the optimal
portfolio.

In the next figure, we superimpose Figure 2.2, Figure 3.2 and Figure
4.1.
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Figure 4.2: Contour lines of the portfolio variance, the objective function, and the
entropy function and expected return with the three optimal portfolios.

In the table below, we show the composition (in %) of the different
optimal portfolios determined by the three different types of portfolio
management.

Český Telecom Mol Millennium Bank

Markowitz 17.7% 4.7% 77.6%

Min CVaR 29.5% 7.9% 62.6%

Entropy 42.9% 23.8% 33.3%
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5 Numerical comparison

The back testing was done in the following manner

Data The data was taken in different stock markets: one collection,
denoted by INDIA was taken from the Bombay Stock Exchange (25
stocks from the BSE 30 Index), another, denoted by OST, came from
several central-eastern European stock markets (22 stocks), another
universe, denoted DOW was the Dow Jones Industrial Average Index
(from from the New York Stock Exchange), another came from the
main stock exchange of the People’s Republic of China, Shanghai
(21 stocks from the SSE 50 Index) and denoted by PRC, and the last
univers, from the Swiss market (42 stocks from the SMI Expanded),
denoted by CH. All the prices were expressed in e. All the data was
taken from one source : DataStream.

Time Interval We chose 48 monthly periods, that spread out through
4 consecutive years (2002, 2003, 2004, 2005).

Parameters & Samples The calculation of the parameters in Problem
1 and the sample need to estimate the integral in Problem 2 were
treated in the following way

I The expected returns and the variance-covariance matrix were
calculated for each different period with the last 36 monthly
returns preceding the period where we determine the portfolio.

II The sample consisted of the last 36 monthly returns preceding
the period where the portfolio was determined.

The index The index was calculated by taking the market capitalisa-
tion MC (in e) of each stock in the universe, and determining the
weights of the portfolio index πI as a capitalized-weighted basis,
that is

πI
i =

MCi

N∑

i=1

MCi

.

The source for the MCi, i = 1, . . . , N , was DataStream.

The Tests For each monthly period, Problems 1, 3 and 4 were solved.
For the universe INDIA and OST, the parameter p in the constraints

40



(the demanded expected return) was 2% (it approximately corre-
spondes to a 26.8% annual return), for the universe DOW and PRC,
p was 0.15% (which represents about 1.82% annual return) and for
the universe CH, a 0.5% monthly return was asked (corresponding
more or less to 6.17% annual return).

Graphics The graphics, that can been seen below, have been produce
for the INDIA, OST, DOW, PRC and CH universe. The first
graphic shows the evolution of an initial wealth of e 1.- during the
48 monthly periods for the three different types of portfolio manage-
ment. The index is also shown, as well as the uniform portfolio

(i.e. all the weights are always 1
N

). The second graphic shows the
annual performance for each type of portfolio management as well as
for the uniform portfolio and the index, i.e. the percentage increase
(or decrease) between 12 consecutive monthly periods. A horizon-
tal yellow line is shown, indicating the annual risk free rate that we
took as 1.5%. The third graph shows the cumulative amount that
was traded (selling and buying stocks) in ordre to re-balance the
portfolio at the end of each period. This statistic, that we will call
flux, is shown for the three types of portfolio management and for
the uniform portfolio.

We now present our graphics for our numerical simulation.
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Figure 5.1: Evolution of an initial value of e 1.- with different type of portfolio man-
agement asking for a 2% or more monthly return over 48 monthly periods with stocks
in INDIA.
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Figure 5.2: The four annual performance in % with stocks in INDIA.
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Figure 5.3: The total amount of flux for different type of portfolio management with
stocks in INDIA.
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Figure 5.4: Evolution of an initial value of e 1.- with different type of portfolio man-
agement asking for a 2% or more monthly return over 48 monthly periods with stocks
in OST.
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Figure 5.5: The four annual performance in % with stocks in OST.
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Figure 5.6: The total amount of flux for different type of portfolio management with
stocks in OST.
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Figure 5.7: Evolution of an initial value of e 1.- with different type of portfolio man-
agement asking for a 0.15% or more monthly return over 48 monthly periods with
stocks in DOW.
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Figure 5.8: The four annual performance in % with stocks in DOW.
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Figure 5.9: The total amount of flux for different type of portfolio management with
stocks in DOW.
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Figure 5.10: Evolution of an initial value of e 1.- with different type of portfolio
management asking for a 0.15% or more monthly return over 48 monthly periods with
stocks in PRC.

46



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

−40

−30

−20

−10

0

10

20

4 annual periods

P
e
r
f
o
r
m
a
n
c
e
 
i
n
 
%

 

 
Max Entropy
Markowitz
Min CVaR
Uniform
Index
Risk Free Rate

Figure 5.11: The four annual performance in % with stocks in PRC.
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Figure 5.12: The total amount of flux for different type of portfolio management with
stocks in PRC.
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Figure 5.13: Evolution of an initial value of e 1.- with different type of portfolio
management asking for a 0.5% or more monthly return over 48 monthly periods with
stocks in CH.
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Figure 5.14: The four annual performance in % with stocks in CH.
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Figure 5.15: The total amount of flux for different type of portfolio management with
stocks in CH.

Notes and Remarks From the first graph of the evolution of the ini-
tial value, we are tempted to conclude that our approach works well.
It performed very well on the INDIA universe and this market is
supposedly the one where we have little information. Compare to
the other types of portfolio management, Max Entropy also per-
formed well in the PRC univers. Min CVaR, however, was not very
convincing in this market.

Concerning the OST univers, maximizing the entropy of the port-
folio was very similar to the uniform portfolio. Max Entropy per-
formed relatively well in the last two years but it did not take ad-
vantage of the bull market of the first two year, where Markowitz
and Min CVaR did. We can see that the Min CVaR type of portfolio
management was very performant and consistent, i.e., all the annual
performances were ‘good’. In the DOW univers, Max Entropy only
managed to beat the index. In the third year, while Markowitz and
Min CVaR managed to have a positive annual performance, Max
Entropy fell back and did not managed to recover this loss in the
last year.
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However, Max Entropy did not performed well at all in the Swiss
market where it did not even beat the index. In the first year, Max
Entropy had the the worst annual performance. The three other
annual performances were were not that bad, but not enough to
catch up with the loss of the first year. On this market, Min CVaR
was not very successful either. Both of theses types of portfolio
management did not performed better than the indice. It is inter-
esting to see that the uniform portfolio was the one that performed
the best and by far in this market.

6 Conclusion

In general, maximizing the entropy of a portfolio can sometimes lead to
a better performance than with other methods. However, it is very well
known that

. . . . . . . past performances do not guarantee future returns . . . . . . .

and so, it is difficult, if not impossible, to firmly conclude. One should
note that in the five universes that we presented, the uniform portfolio,
followed by the Max Entropy portfolio management type, were the ones
that had the smallest flux. The flux of the uniform portfolio ranged
between e 2.- to e 4.-, while the flux of Min CVaR (which was all ways
the largest except for the universe PRC, where it was slightly smaller
than the flux of Markowitz), was between e 13.- and e 20.- . In practice,
this means that there would have been smaller transaction costs for the
uniform portfolio or Max Entropy than for Min CVaR or Markowitz.

We have other types of portfolio management in mind that one could
investigate. One problem that we can consider would be:

Problem 5.
min
π∈RN

{−H(π)}

with the constraints

1. πi > 0 ∀ i ∈ {1, ..., N}

2.
N∑

i=1

πi = 1
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3. Var[rπ] 6 r to guarantee a maximum theoretical risk r or less

Note: The type of portfolio management where we solve Problem 5 for
each monthly period, is called Max Entropy (RISK) and by Markowitz

(RISK), we mean the type of portfolio management where we solve the
Problem 6, which we present just below.

Problem 6.
max
π∈RN

{E[rπ]}

with the constraints

1. πi > 0 ∀ i ∈ {1, ..., N}

2.
N∑

i=1

πi = 1

3. Var[rπ] 6 r to guarantee a maximum theoretical risk r or less

We have done some tests, and we haven seen that in this case, our ap-
proach performed well on the Swiss market. For this test, the parameter
r was taken to be r = 7%.
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Figure 6.1: Evolution of an initial value of e 1.- with different type of portfolio man-
agement demanding for a 7% or less variance over 48 monthly periods with stocks in
CH.
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One could also investigate the effects if we worked with ‘Relative-
Entropy’. That is, for fixed portfolio weights qi (ex. the index),

HR−E(π) = −
N∑

i=1

πi log(
πi

qi

) .

This could be interesting to compare with ETFs (Exchange Traded
Funds). One could continue and investigate other strategies such as:
for λ1, λ2, λ3 ∈ [0, 1] and λ1 + λ2 + λ3 = 1

πλ := λ1πV AR + λ2πCV aR + λ3πME,

where πV AR minimizes the variance, πCV aR minimizes CVaR and πME

maximizes entropy, all three under the usual constraints.

Note: The figure on the first page shows the entropy (on the z-axis) of
all the possible portfolios composed of the three stocks: Česk Telecom,
Mol, Millennium Bank. On the x-axis, we have the risk (measured with
the CVaR), on the y-axis, we have the expected return and the z-axis
is the entropy. The three ‘foot’ correspond to the portfolios that are
totally concentrated on one stock. At these points, the entropy is zero,
and on the x-axis and y-axis we have the risk (CVaR) and expected
return respectively for the stock in question. The rest of the black dots
show all the other portfolios where the hight of each black dot is the
entropy of the corresponding portfolio.
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Appendix

A Uniqueness of the solution for Problem 1

We will show that Problem 1 has a unique solution if σ is invertible.

Definition 9. We say that the matrix A ∈ MatN,N(R) is positive

semi-definite if
x⊤A x > 0 ∀ x ∈ RN .

Definition 10. We say that the matrix A ∈ MatN,N(R) is positive

definite if
x⊤A x > 0 ∀ x ∈ RN \ {0}.

Theorem 3. A variance-covariance matrix σ is positive semi-definite.

Proof. Since, by definition, the covariance between two random variables
Xi and Xj is Cov[Xi, Xj] := E[XiXj]−E[Xi]E[Xj], which will be denoted
by σi,j, we have for all x ∈ RN

x⊤σ x =
N∑

i=1

N∑

j=1

xixjσi,j

=
N∑

i=1

N∑

j=1

xixj(E[XiXj] − E[Xi]E[Xj])

=
N∑

i=1

N∑

j=1

xixjE[XiXj] −
N∑

i=1

N∑

j=1

xixjE[Xi]E[Xj]

= E[
N∑

i=1

N∑

j=1

xixjXiXj] −
N∑

i=1

N∑

j=1

E[xiXi]E[xjXj]

= E[(
N∑

i=1

xiXi)
2] − (E[

N∑

i=1

xiXi])
2

= Var[
N∑

i=1

xiXi]

and a variance is always greater or equal to zero.

We now show that if σ admits an inverse, then σ is positive definite.
To this end, we use the spectral theorem in R:

Theorem 4. Let A ∈ MatN,N(R) be a symmetric matrix. Then

• SpecA ⊂ R
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• A can be diagonalized

• ∃ {x1, . . . , xN} ⊂ RN an orthogonal basis of eigenvectors of A

(Axi = λixi, λi ∈ R ∀ i and 〈xi|xj〉 = 0 ∀ i, j and i 6= j)

Theorem 5. Let A ∈ MatN,N(R) be a symmetric, positive semi-definite
matrix. Then

∃ A−1 ⇐⇒ A is positive definite

Proof. [⇒] Let x ∈ RN \ {0}. By the Spectral theorem, we can express

x in the basis formed by the eigenvectors (x =
N∑

i=1

αixi). Calculating the

product, we have

〈x|Ax〉 = 〈
N∑

i=1

αixi|
N∑

i=1

αi Axi︸︷︷︸

=λixi

〉 =
N∑

i,j

〈αixi|λjαjxj〉.

Since 〈xi|xj〉 = 0 for all i, j and i 6= j, we have

〈x|Ax〉 =
N∑

i=1

α2
i λi‖xi‖

2. (A.1)

Since A is positive semi-definite, this last expression must be non-negative,
and from

• ‖xi‖
2 > 0 ∀ i because {xi}

N
i=1 formes a basis

• α2
i > 0 ∀ i and ∃ j (at least one) such that αj > 0 because x ∈

RN \ {0}

• (A.1) holds for all x ∈ RN (and in particular for any αi)

we conclude that λi > 0 ∀ i. If λi > 0 ∀ i, then we have that A is a
positive definite matrix, concluding the first part of the proof. This is
true because, by hypothesis, A is invertible. In fact, we have

∄ A−1 ⇐⇒ ∃ x 6= 0 such that Ax = 0
⇐⇒ 0 is an eigen value

Therefore, A−1∃ ⇐⇒ SpecA ⊂ R \ {0} (SpecA ⊂ R already since A is
symmetric (spectral theorem)). Hence, λi > 0 ∀ i.
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[⇐] Let x ∈ RN \ {0}. Because A is positive definite, we have

〈x|Ax〉 =
N∑

i=1

α2
i λi‖xi‖

2 > 0.

Therefore, as above, this is true for all x ∈ RN (and in particular for
any αi) and so we must have λi > 0 ∀ i. Again, from above, if all the
eigenvalues are in R \ {0}, then the invertible matrix A exists which
concludes the proof of the theorem.

We will now see that if A ∈ MatN,N(R) is positive definite, then there
exists a unique x that solves the Problem 1. To see this we consider
Problem 1 as a particular case of the more general problem:

Problem 7. Let A ∈ MatN,N(R) either be a positive semi-definite or a
positive definite matrix, a ∈ RN be an N-dimensional vector and let φ

be the function

φ(x) =
1

2
x⊤A x + a⊤x

The problem consist of finding an x that minimizes φ under the condition
where x belongs to a predefined feasible set F = Ic ∩ Ec, where Ic :=
{x ∈ RN |Bx 6 α} consists of the inequality constraints and Ec := {x ∈
RN |Cx = β} consists of the equality constraints, with B and C real
matrices of dimension k × N and l × N respectively, and α and β are
predefined vectors.

Note: By defining the sets

Ic := {π ∈ RN |










−1 0 · · · 0

0 . . . ...
... . . . 0
0 · · · 0 −1

−µ1 · · · · · · −µN














π1
...

πN



 6








0
...
0
p







},

Ec := {π ∈ RN |
(

1 · · · 1
)





π1
...

πN



 = 1},

in our case, the feasible set is:

F := Ic ∩ Ec.
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Let us show, for Problem 7, that any local minimum is a global mini-
mum if A is positive semi-definite and that the solution to Problem 7 is
reduced to a unique x if A is positive definite.

If F = ∅, the constraints of the problem are such that the problem
itself is not interesting since there is no feasible point. We suppose,
therefore, that F 6= ∅. If is reduced to a single point F = {x̌} (this
could be the case if, in the equality constraints Ec, C is an N × N
invertible matrix), then Problem 7 has one, and only one solution. Let
us suppose that F is not reduced to a singleton. Let x̌ ∈ F be a local
minimum, that is, there exists ǫ > 0 such that

∀ x ∈ Nǫ(x̌) := {x ∈ RN | |x̌i − xi| 6 ǫ, i = 1, . . . , N}

we have
φ(x̌) 6 φ(x).

Let x̄ ∈ F and x̄ 6= x̌. Defining xλ by

xλ := (1 − λ)x̌ + λx̄, λ ∈ [0, 1]

we have that xλ ∈ F because

Bxλ = (1 − λ)Bx̌ + λBx̄ 6 (1 − λ)α + λα = α.

Hence xλ ∈ Ic. In addition,

Cxλ = (1 − λ)Cx̌ + λCx̄ = (1 − λ)β + λβ = β,

and hence xλ ∈ Ec. Therefore, xλ ∈ F for all λ ∈ [0, 1].
We now focus on a particular point,

xξ := (1 − ξ)x̌ + ξx̄, 0 < ξ 6
ǫ

maxi{|x̌i − x̄i|}
.

Since ξ > 0, we have that xξ 6= x̌. We also have

xξ ∈ Nǫ(x̌), ∀ ξ such that 0 < ξ 6
ǫ

maxi{|x̌i − x̄i|}
,

because, if one takes the largest value for ξ, one has:

xξ = x̌ +
ǫ

maxi{|x̌i − x̄i|}
(x̄ − x̌),
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and therefore every coordinate of xξ differs from the corresponding coor-
dinate of x̌ by no more than ǫ. One can take an ǫ̌ 6 ǫ sufficiently small
so that

ǫ̌

maxi{|x̌i − x̄i|}
(x̄ − x̌) < 1,

and therefore, from what we have seen above, we have xξ ∈ F ∩ Nǫ(x̌)
and thus

φ(x̌) 6 φ(xξ).

If A is positive semi-definite, we have

1

2
(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄) =: κ > 0, 0 < λ < 1.

Let us suppose that φ(x̄) < φ(x̌). This implies that ∃ η > 0 such that

φ(x̄) = φ(x̌) − η.

To continue, we must establish the following equation: xλ defined as
above, one has

φ(xλ) = (1 − λ)φ(x̌) + λφ(x̄) −
1

2
(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄), (A.2)
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which follows from the simple but relatively long computation.

φ(xλ) =
1

2
x⊤

λ Axλ + a⊤xλ

=
1

2
[(1 − λ)x̌⊤ + λx̄⊤]A[(1 − λ)x̌ + λx̄] + a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)x̌⊤A + λx̄⊤A][(1 − λ)x̌ + λx̄] + a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)2x̌⊤Ax̌ + λ(1 − λ)x̌⊤Ax̄ + λ(1 − λ)x̄⊤Ax̌ + λ2x̄⊤Ax̄]

+a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − 2λ + λ2)x̌⊤Ax̌ + (λ − λ2)x̌⊤Ax̄ + (λ − λ2)x̄⊤Ax̌ + λ2x̄⊤Ax̄]

+a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[x̌⊤Ax̌ − 2λx̌⊤Ax̌ + λ2x̌⊤Ax̌ + λx̌⊤Ax̄ − λ2x̌⊤Ax̄

+λx̄⊤Ax̌ − λ2x̄⊤Ax̌ + λ2x̄⊤Ax̄] + a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)x̌⊤Ax̌ + λx̄⊤Ax̄ − λx̄⊤Ax̄ − λx̌⊤Ax̌

+λ2(x̌⊤Ax̌ − x̌⊤Ax̄ − x̄⊤Ax̌ + x̄⊤Ax̄) + λx̌⊤Ax̄ + λx̄⊤Ax̌]

+a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)x̌⊤Ax̌ + λx̄⊤Ax̄ − λ2(−x̌⊤Ax̌ + x̌⊤Ax̄ + x̄⊤Ax̌ − x̄⊤Ax̄)

+λ(−x̌⊤Ax̌ + x̌⊤Ax̄ + x̄⊤Ax̌ − x̄⊤Ax̄)] + a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)x̌⊤Ax̌ + λx̄⊤Ax̄ + (λ − λ2)(x̌⊤A(x̄ − x̌) + x̄⊤A(x̌ − x̄))]

+a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[(1 − λ)x̌⊤Ax̌ + λx̄⊤Ax̄ + (λ − λ2)((x̄⊤ − x̌⊤)A(x̌ − x̄))]

+a⊤[(1 − λ)x̌ + λx̄]

=
1

2
[−(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄) + (1 − λ)x̌⊤Ax̌ + λx̄⊤Ax̄]

+(1 − λ)a⊤x̌ + λa⊤x̄

= (1 − λ)[
1

2
x̌⊤Ax̌ + a⊤x̌] + λ[

1

2
x̄⊤Ax̄ + a⊤x̄]

−
1

2
(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄)

= (1 − λ)φ(x̌) + λφ(x̄) −
1

2
(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄).

If we replace κ and φ(x̄) = φ(x̌) − η in Equation (A.2), we have

φ(xλ) = φ(x̌) − λη − κ = φ(x̌) − (λη + κ),
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and since λ and η are strictly greater than zero we obtain

φ(xλ) < φ(x̌), ∀ λ ∈ (0, 1),

and, in particular, for λ = ξ, and this is in contradiction to φ(x̌) 6 φ(xξ).
Therefore we conclude that φ(x̌) 6 φ(x̄) if A is positive semi-definite.
In other words, if A is positive semi-definite, then all local minima take
the value of the one and only global minimum.

If A is positive definite, then, since x̄ 6= x̌,

1

2
(λ − λ2)(x̌⊤ − x̄⊤)A(x̌ − x̄) := κ > 0, 0 < λ < 1.

Supposing that φ(x̄) 6 φ(x̌), there exists an η > 0 such that

φ(x̄) = φ(x̌) − η.

If we replace again κ and φ(x̄) = φ(x̌) − η in Equation (A.2), we have

φ(xλ) = φ(x̌) − (λη + κ),

and since κ is strictly greater than zero we obtain

φ(xλ) < φ(x̌), ∀ λ ∈ (0, 1),

and, we again have the same contradiction. Therefore we conclude that
φ(x̌) < φ(x̄) for all x̄ ∈ F and x̄ 6= x̌ if A is positive definite. In other
words, if A is positive definite, then there is only one local minimum,
and hence only one global minimum that is reached by one and only one
point x̌.

B Continuity of an integral with respect to a pa-

rameter

We present the theorem with a more general statement than what we
need. Letting (E, A, µ) be a mesure space, we define

L1[E, µ] := {f : (E, A) → (R, BR) | f is µ − measurable function,
∫

E
|f | dµ < +∞}/ ∼

where BR is the Borel σ-algebra on R and ∼ is the equivalence relation
defined by

f ∼ g ⇔ f − g ∈ {f : (E, A) → (R, BR) | f ≡ 0 µ− almost everywhere}.
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Theorem 6. We consider a measure space (E, A, µ), a topological metriz-
able space X and a function g : X × E −→ R. We suppose that

1. for µ−almost all y ∈ E, g(x, y) is continuous with respect to x ∈ X

2. ∀ x ∈ X, g(x, ·) ∈ L1(E, A, µ)

3. ∀ x0 ∈ X,∃ N (x0) a neighborhood of x0 and ∃ h ∈ L1(E, A, µ) such
that ∀ x ∈ N (x0) we have

|g(x, ·)| 6 h µ − almost everywhere.

Then the function x 7−→
∫

E

g(x, y) dµ(y) is continuous with respect to x.

A proof of this theorem can be found in [3], page 98.

C Equivalence on the hypothesis

The equivalence
∫

y∈RN
>0

‖y‖1ρ(y) dy < +∞ ⇐⇒

∫

y∈RN
>0

yiρ(y) dy < +∞, i = 1, . . . , N

is due to the following theorem that we present with slightly more general
hypothesis.

Theorem 7. Let ρ : Rn −→ R>0 be a positive function. Then
∫

y∈RN

yiρ(y) dy converges , i = 1, . . . , N ⇐⇒

∫

y∈RN

|yi|ρ(y) dy converges ,

for i = 1, . . . , N .

Proof. We show both sides of the equivalence with the same reasoning.
∫

y∈RN

yiρ(y) dy =

∫

y∈[0,+∞[N

yiρ(y) dy +

∫

y∈]−∞,0[N

yiρ(y) dy

=

∫

y∈[0,+∞[N

yiρ(y) dy −

∫

y∈]−∞,0[N

|yi|ρ(y) dy.
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If we multiply the second integral by −1, it will still converge and so,
∫

y∈[0,+∞[N

|yi|ρ(y) dy +

∫

y∈]−∞,0[N

|yi|ρ(y) dy =

∫

y∈RN

|yi|ρ(y) dy.

We conclude the equivalence of the hypothesis with the following ob-
vious equalities:

N∑

i=1

∫

y∈RN

|yi|ρ(y) dy =

∫

y∈RN

N∑

i=1

|yi|ρ(y) dy =

∫

y∈RN

‖yi‖1ρ(y) dy.

D Dominated Convergence Theorem

We give a particular statement of the Lebesgue Dominated Convergence
Theorem. We denote by λ the Lebesgue mesure, that is:

λ([α, β]) = β − α, ∀ intervals [α, β] ⊂ R,

and the set of Lebesgue integrable function over R is

L[R, λ] := {f : (R, BR) → (R, BR) | f is a Borel measurable function,
∫

R |f | dλ < +∞}/ ∼

where BR is the Borel σ-algebra on R and ∼ is the equivalence relation

f ∼ g ⇔ f −g ∈ {f : (R, BR) → (R, BR) | f ≡ 0 λ−almost everywhere}

Theorem 8. Let {fn}
∞
n=0 be a sequence in L[R, λ]. We suppose the

following:

• ∀ x ∈ R, f(x) = limn→∞ fn(x) (point by point convergence)

• ∃ g ∈ L[R, λ] such that

– 0 6 g(x) ∀ x ∈ R

– |fn(x)| 6 g(x) ∀ n ∈ N, ∀ x ∈ R

We therefore have:

• f ∈ L[R, λ]

• limn→∞

∫

R |fn − f | dλ = 0

• limn→∞

∫

R fn dλ =
∫

R f dλ

A proof of this theorem can be found in [12], page 24.
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E Convex functions and their minimum

Theorem 9. Let F : Rn+1 −→ R be a convex function such that F is
continuously differentiable with respect to its last variable, i.e. ∀ x ∈ Rn

fixed, ∂Fx

∂α
(α) exists and is continuous. We suppose that there exists α0

such that ∂Fx

∂α
(α0) = 0. Then

∀ x ∈ Rnfixed, Fx(α0) is a minimum.

Proof. We suppose that there exists α 6= α0 such that Fx(α) < Fx(α0).
Without loss of generality, we can suppose that α − α0 > 0. Since Fx is
convex, then, for all λ ∈ (0, 1),

Fx(λα + (1 − λ)α0) 6 λFx(α) + (1 − λ)Fx(α0)

Fx(α0 + λ(α − α0)) − Fx(α0) 6 λFx(α) + Fx(α0) − λFx(α0) − Fx(α0)

We divide both sides by 1
λ(α−α0)

, and we obtain

Fx(α0 +

=:h
︷ ︸︸ ︷

λ(α − α0)) − Fx(α0)

λ(α − α0)
︸ ︷︷ ︸

=:h
︸ ︷︷ ︸

−−→
h→0

0

6
λ(Fx(α) − Fx(α0))

λ(α − α0)
< 0.

The left hand side of the inequality converges to 0 when h → 0, since
the function is differentiable, and so we have a contradiction, so Fx(α) >

Fx(α0).

Theorem 10. Let F : RN −→ R be a convex function. Let x0, x̌ ∈
R, x0 6= x̌ be such that F (x0) and F (x̌) are two local minima. Then

F (x0) = F (x̌).

That is, for a convex function, all local minima are the global minimum.

Proof. Suppose that F (x0) 6= F (x̌). Without loss of generality, assume
that F (x0) > F (x̌). Since x0 is a local minimum, there exists ǫ > 0 such
that

F (x0) 6 F (x), ∀ x ∈ Nǫ(x0) := {x ∈ RN | |xi−x0i
| < ǫ, i = 1, . . . , N}.
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Let λ0 := ǫ0
maxi{|x̌i−x0i

|} and chose ǫ0 such that 0 < ǫ0 6 ǫ and λ0 ∈ (0, 1).

We then obtain
λ0x̌ + (1 − λ0)x0 ∈ Nǫ(x0),

since, ∀ i = 1, . . . , N we have

|λ0x̌i + (1 − λ0)x0i
− x0i

| = | ǫ0
maxi{|x̌i−x0i

|} x̌i −
ǫ0

maxi{|x̌i−x0i
|}x0i

|

= ǫ0
maxi{|x̌i−x0i

|}|x̌i − x0i
| 6 ǫ0.

Therefore F (λ0x̌ + (1 − λ0)x0) > F (x0). Since F (x̌) − F (x0) < 0,
λ0(F (x̌) − F (x0)) < 0 and hence

F (λ0x̌ + (1 − λ0)x0) > F (x0) + λ0(F (x̌) − F (x0))
> λ0F (x̌) + (1 − λ0)F (x0).

This is a contradiction to the fact that F is convex. Therefore, F (x0) =
F (x̌).

F ‘min of min’

Theorem 11. Let G : X × Y −→ R be a function such that there exists
a ∈ R such that

a := min
x∈X

{min
y∈Y

{G(x, y)}}.

Then there exists ǎ ∈ R such that

ǎ = min
(x,y)∈X×Y

{G(x, y)}

and a = ǎ.

Proof. Let b := inf(x,y)∈X×Y {G(x, y)} belong to R̄, that is, −∞ = b or
−∞ < b. We suppose that b < a. We consider the two possible cases:

• −∞ = b
∀ c < a, ∃ (xc, yc) ∈ X × Y such that

G(xc, yc) 6 c < a, and so we have: min
y∈Y

{G(xc, y)} 6 G(xc, yc) 6 c < a

However, we also have the following inequalities

min
x∈X

{min
y∈Y

{G(x, y)}}
︸ ︷︷ ︸

=a

6 min
y∈Y

{G(xc, y)} 6 G(xc, yc) 6 c < a.

We therefore have a contradiction.
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• −∞ < b < a
∀ c such that b < c < a, ∃ (xc, yc) ∈ X × Y such that

G(xc, yc) 6 c < a.

Following the same reasoning as above, we will again encounter the
same contradiction. Therefore, b > a. We will show that b 6 a.
By hypothesis, ∃ (x0, yx0

) such that G(x0, yx0
) = a. By definition,

b = inf(x,y)∈X×Y {G(x, y)}, therefore, in particular, it is smaller than
a. We have

b 6 G(x0, yx0
) = a, ⇒ b 6 a

Hence b = a, and since a exists by hypothesis, then b exists and
because

b = inf
(x,y)∈X×Y

{G(x, y)} = a = G(x0, yx0
),

b attains a value of G and so

b = min
(x,y)∈X×Y

{G(x, y)}.

G Equivalence between Problem 2 (with the func-

tion F̃β) and Problem 3

The equivalence between Problem 2 (with the function F̃β) and Problem
3 is due to the following arguments.

Let (π∗, α∗) be a solution for Problem 2, then (π∗, α∗, z∗), where z∗j :=
[1−〈π∗|yj〉−α∗]+, is a solution for Problem 3, because if not, then there
exist (π̃, α̃, z̃) such that

F̃β(π
∗, α∗) = α∗ + µ

n∑

j=1

z∗j > α̃ + µ

n∑

j=1

z̃j,

with z̃j > 0 and z̃j > 1 − 〈π̃|yj〉 − α̃. Defining žj := 1 − 〈π̃|yj〉 − α̃, the
we have z̃j > [žj]

+, meaning that

F̃β(π
∗, α∗) > α̃ + µ

n∑

j=1

[žj]
+ = F̃β(π̃, α̃),
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which is in contradiction to the fact that (π∗, α∗) realizes the minimum
of the function F̃β.

Suppose now that (π∗, α∗, z∗) is a solution for Problem 3, then (π∗, α∗)
is a solution for Problem 2 (with the function F̃β). If this is not true,
then there exist (π̃, α̃) such that

α∗ + µ

n∑

j=1

[1 − 〈π∗|yj〉 − α∗]+ > α̃ + µ

n∑

j=1

[1 − 〈π̃|yj〉 − α̃]+

By the fifth constraint of the Problem 3, we have

α∗ + µ
n∑

j=1

z∗j > α∗ + µ
n∑

j=1

[1 − 〈π∗|yj〉 − α∗]+

Defining z̃j := [1 − 〈π̃|yj〉 − α̃]+, we have

α∗ + µ

n∑

j=1

z∗j > α̃ + µ

n∑

j=1

z̃j,

which is in contradiction to the fact that (π∗, α∗, z∗) is a solution for
Problem 3.

H Uniqueness of the solution for Problem 2

We recall the function Fβ but in a more general setting (where we inte-
grate over all RN and not only over RN

>0),

Fβ : Π × R −→ R

(π, α) 7−→ α + (1 − β)−1

∫

y∈RN

[f(π, y) − α]+ρ(y) dy,

where Π ⊂ RN and Π is the set of available portfolios.

We show the calculations for the case N = 2. In this case, we can
substitute for one variable: π1 +π2 = 1 ⇔ π2 = 1−π1. This substitution
leads to

1−π1y1−π2y2−α = 1−π1y1− (1−π1)y2−α = 1−π1(y1−y2)−y2−α.
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Therefore our function is reduced to two variables (π1, α), and so we will
work with (π, α),

Fβ(π, α) = α + (1 − β)−1

∫

y∈R2

[1 − π(y1 − y2) − y2 − α]+ρ(y) dy.

We will first calculate the first derivative with respect to π.

∂Fβ

∂π
(π, α) = (1 − β)−1 ∂

∂π

(
∫

y∈R2

[1 − π(y1 − y2) − y2 − α]+ρ(y) dy
)

= (1 − β)−1 ∂

∂π

(
∫

1−π(y1−y2)−y2−α>0

(1 − π(y1 − y2) − y2 − α)ρ(y) dy
)
.

The set {y ∈ R2|1 − π(y1 − y2) − y2 − α > 0} is the same as {y ∈
R2|1−α−πy1

1−π
> y2}, so our integral becomes

= (1 − β)−1 ∂

∂π

(
+∞∫

−∞

1−α−πy1
1−π∫

−∞

(1 − π(y1 − y2) − y2 − α)ρ(y1, y2) dy2 dy1

)
.

We switch the first integral with the derivative, and we are interested in
calculating

∂

∂π

(

1−α−πy1
1−π∫

−∞

(1 − π(y1 − y2) − y2 − α)ρ(y1, y2) dy2

)
.

We will do this with the help of the Leibniz integral rule (refer to [8, pp
272]),

∂

∂x

(

b(x)∫

a(x)

K(x, τ) dτ
)

=

b(x)∫

a(x)

∂K

∂x
(x, τ) dτ+

[
K(x, b(x))b′(x)−K(x, a(x))a′(x)

]
.

If we let K(π, y2) = (1 − π(y1 − y2) − y2 − α)ρ(y1, y2), we obtain

∂K

∂π
(π, y2) = (y2 − y1)ρ(y1, y2).
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It is obvious that K(π, 1−α−πy1

1−π
) equals zero. K(π, a(π))a′(π) is zero.

Therefore

∂Fβ

∂π
(π, α) = (1 − β)−1

(
+∞∫

−∞

1−α−πy1
1−π∫

−∞

(y2 − y1)ρ(y1, y2) dy2 dy1

)
.

In Theorem 1, we have seen that

∂Fβ

∂α
(π, α) = (1 − β)−1

[∫

f(π,y)6α

ρ(y) dy − β
]

.

Since in this case the derivative was taken with respect to α, we can
substitue the constraint (that concerns only the first packet of variables
π) in the derivative. Here we see that the inequality in the domain of
integration is of opposite sign as the previous one, so the derivative with
respect to α is

∂Fβ

∂α
(π, α) = (1 − β)−1

(
+∞∫

−∞

+∞∫

1−α−πy1
1−π

ρ(y1, y2) dy2 dy1

)
.

We use again the Leibniz integral rule to calculate the second order
derivatives.

[
∂2Fβ

∂π2 ] Let us calculate the second derivative with respect to π for the
first derivative with respect to π.

∂2Fβ

∂π2
(π, α) = (1 − β)−1

(
+∞∫

−∞

∂

∂π

1−α−πy1
1−π∫

−∞

(y2 − y1)ρ(y1, y2) dy2 dy1

)
.

If we let K(π, y2) = (y2 − y1)ρ(y1, y2) then

∂K

∂π
(π, y2) = 0,

and if we let b(π) = 1−α−πy1

1−π
, then

b′(π) =
−y1(1 − π) − (1 − α − πy1)(−1))

(1 − π)2
=

1 − α − y1

(1 − π)2
.
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We now calculate K(π, b(π)):

K(π,
1 − α − πy1

1 − π
) = (

1 − α − πy1

1 − π
− y1) ρ(y1,

1 − α − πy1

1 − π
)

︸ ︷︷ ︸

=:ρ̄(y1)

=
1 − α − πy1 − y1(1 − π)

1 − π
ρ̄(y1)

=
1 − α − y1

1 − π
ρ̄(y1).

In addition, K(π, a(π))a′(π) is zero. Therefore

∂2Fβ

∂π2
(π, α) =

(1 − β)−1

(1 − π)3

+∞∫

−∞

(1 − α − y1)
2ρ̄(y1) dy1.

[
∂2Fβ

∂π∂α
] Let us calculate the second derivative with respect to α for the

first derivative with respect to π.

∂2Fβ

∂π∂α
(π, α) = (1 − β)−1

(
+∞∫

−∞

∂

∂α

1−α−πy1
1−π∫

−∞

(y2 − y1)ρ(y1, y2) dy2 dy1

)
.

If we let K(α, y2) = (y2 − y1)ρ(y1, y2) then

∂K

∂α
(α, y2) = 0,

and if we let b(α) = 1−α−πy1

1−π
then

b′(α) =
−1

1 − x
.

We now calculate K(α, b(α)).

K(α,
1 − α − πy1

1 − π
) = (

1 − α − πy1

1 − π
− y1)ρ̄(y1)

=
1 − α − y1

1 − π
ρ̄(y1),

In addition, K(α, a(α))a′(α) is zero. Therefore

∂2Fβ

∂π2
(π, α) =

−(1 − β)−1

(1 − π)2

+∞∫

−∞

(1 − α − y1)ρ̄(y1) dy1.
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[
∂2Fβ

∂α∂π
] Let us calculate the second derivative with respect to π for the

first derivative with respect to α. We should get the same result as
above which serves as a verification,

∂2Fβ

∂α∂π
(π, α) = (1 − β)−1

(
+∞∫

−∞

∂

∂π

+∞∫

1−α−πy1
1−π

ρ(y1, y2) dy2 dy1

)
.

If we let K(π, y2) = ρ(y1, y2) then

∂K

∂π
(π, y2) = 0,

and if we let a(π) = 1−α−πy1

1−π
then

a′(π) =
1 − α − y1

(1 − π)2
.

We now calculate K(π, a(π)):

K(π, a(π)) = ρ̄(y1).

In addition, K(π, b(π))b′(π) is zero. Therefore

∂2Fβ

∂α∂π
(π, α) =

−(1 − β)−1

(1 − π)2

+∞∫

−∞

(1 − α − y1)ρ̄(y1) dy1.

[
∂2Fβ

∂α2 ] Let us calculate the second derivative with respect to α for the
first derivative with respect to α.

∂2Fβ

∂α2
(π, α) = (1 − β)−1

(
+∞∫

−∞

∂

∂α

+∞∫

1−α−πy1
1−π

ρ(y1, y2) dy2 dy1

)
.

If we let K(α, y2) = ρ(y1, y2) then

∂K

∂α
(α, y2) = 0,

and if we let a(α) = 1−α−πy1

1−π
then

a′(α) =
−1

(1 − π)
.
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We now calculate K(α, a(α)).

K(α, a(α)) = ρ̄(y1)

K(α, b(α))b′(α) is zero. Therefore

∂2Fβ

∂α2
(π, α) =

(1 − β)−1

1 − π

+∞∫

−∞

ρ̄(y1) dy1.

The Hessian matrix D[∇(Fβ)](π,α) is therefore given by








(1 − β)−1

(1 − π)3

+∞∫

−∞

(1 − α − y1)
2ρ̄(y1) dy1

−(1 − β)−1

(1 − π)2

+∞∫

−∞

(1 − α − y1)ρ̄(y1) dy1

−(1 − β)−1

(1 − π)2

+∞∫

−∞

(1 − α − y1)ρ̄(y1) dy1
(1 − β)−1

1 − π

+∞∫

−∞

ρ̄(y1) dy1








.

The first element in this matrix (first row, first column) is strictly pos-
itive and if we show that the determinant of the Hessian is strictly pos-
itive, then by [4, Thm.4.7], the Hessian matrix D[∇(Fβ)](π,α) is positive
definite. We know that there exist a point (π̌, α̌) such that ∇Fβ(π̌, α̌) =
0. For any point (π, α) 6= (π̌, α̌), and if D[∇(Fβ)](π,α) is positive definite
for all points, then, by a Taylor expansion (neglecting the terms of order
3 and more) we have

Fβ(π, α)−Fβ(π0, α0) ≃
1

2
((π, α) − (π0, α0))

⊤D[∇(Fβ)](π,α)((π, α) − (π0, α0))
︸ ︷︷ ︸

>0

Therefore, there is one and only one point that minimizes the function
Fβ.

Let us show that the determinant of the Hessian is strictly positive
for all points. Let V denote the vector space of affine function of one
variable, i.e.

V := {γ : R −→ R |γ(y) = η + y, for a certain η ∈ R}.

On V , we define a scalar product

〈·|·〉ρ̄ : V × V −→ R
(γ1, γ2) 7−→

∫

R

γ1(y)γ2(y)ρ̄(y) dy
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Then, functional analysis confirms that we have the well known Cauchy-
Schwarz inequality

|〈γ1|γ2〉ρ̄|
2
6 〈γ1|γ1〉ρ̄〈γ2|γ2〉ρ̄

and

‖γ‖ρ̄ :=
√

〈γ|γ〉ρ̄ =

√
√
√
√

∫

R

γ(y)2ρ̄(y) dy

is a norm.
We define γ1(y) := 1 − α − y and γ2(y) := 1. Since γ1 and γ2 are not

co-linear, we have the strict inequality

( ∫

R

γ1(y)ρ̄(y) dy
)2

<

∫

R

γ1(y)2ρ̄(y) dy

∫

R

ρ̄(y) dy.

Therefore, we have

(1 − β)−1

(1 − π)4

∫

R

γ1(y)2ρ̄(y) dy

∫

R

ρ̄(y) dy−
(1 − β)−1

(1 − π)4

(∫

R

γ1(y)ρ̄(y) dy
)2

> 0,

which is the determinant of D[∇(Fβ)](π,α), and so the Hessian is positive
definite for all points.

I Uniqueness of the solution for Problem 4

Let Π = {π ∈ RN |πi > 0, i = 1, . . . , N and
N∑

i=1

πi = 1} ⊂ [0, 1]N . We

define
H− : Π −→ R

π 7−→
N∑

i=1

πi log(πi).

For all i, we define the function

φi : [0, 1] −→ R
x 7−→ x log(x).

We know that, for all i ∈ {1, . . . , N}, φi is continuous and it is strictly
convex (i.e. ∀ λ ∈]0, 1[, φ(λx+(1−λ)y) < λφ(x)+(1−λ)φ(y)), because
of the following lemma.
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Lemma 2. Let f : [a, b] −→ R be a continuous function such that f ′(x)
exists for all x ∈ (a, b). If f ′(x) is monotonically increasing, then f is a
convex function.

Proof. Let x, y ∈ [a, b] and define k := λx + (1 − λ)y with λ ∈]0, 1[. By
the Mean Value Theorem, we have

f(x) − f(k) = f ′(ξ1)(x − k) and f(y) − f(k) = f ′(ξ2)(y − k),

and by hypothesis, we have f ′(ξ1) 6 f ′(ξ2), which implies

f(x) − f(k)

x − k
6

f(y) − f(k)

y − k
f(x) − f(λx + (1 − λ)y)

(1 − λ)(x − y)
6

f(y) − f(λx + (1 − λ)y)

λ(y − x)

f(λx + (1 − λ)y)

(y − x)
6

(1 − λ)(f(y) − f(λx + (1 − λ)y)) + λf(x)

λ(y − x)

0 6
−f(λx + (1 − λ)y) + λf(x) + (1 − λ)f(y)

λ
f(λx + (1 − λ)y) 6 λf(x) + (1 − λ)f(y),

and hence shows that f is convex.

It is easy to see from the proof that if f ′(x) is strictly monotonically
increasing, then f is strictly convex. In our case, φ′

i(x) = log(x) + 1
which is well defined on (0, 1) and is strictly increasing and therefore φi

is strictly convex.
We can now define

Φ : [0, 1]N −→ R

x 7−→
N∑

i=1

φi(x).

We know that Φ is continuous and strictly convex (since it is the sum
of continuous and strictly convex functions). If we restrict Φ to the
convex set Π, then obviously it is still continuous and strictly convex,
and because H− ≡ Φ|Π, H− is continuous and strictly convex on Π and
in particular, on any closed, convex subset F of Π (where F is seen as
the feasible set of Problem 4). Therefore, there exists a unique π∗ ∈ F

such that H−(π∗) = minπ∈F{H−(π)}. This is because if we suppose that

∃ π∗, π̌∗ ∈ F such that H(π∗) = min
π∈F

{H−(π)} and H(π̌∗) = min
π∈F

{H−(π)},
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and because H− is strictly convex, we have H−(π∗) = H−(π̌∗) (refer to
Appendix E) and

H−(λπ∗ + (1 − λ)π̌∗) < λH−(π∗) + (1 − λ)H−(π̌∗)

H−(λπ∗ + (1 − λ)π̌∗) < H−(π̌∗).

This is a contradiction to the fact that π̌∗ is a minimum of the function
H−.
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